The use of pharmacological agents to trigger preconditioning mechanisms may improve the prevention and treatment of coronary heart disease. The aim of this study was to evaluate the ability of a structural analog of apelin-12 ((NαMe)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, metilin) to reproduce the effect of ischemic preconditioning (IP) of rat hearts in vivo. Control rats were exposed to 40-min occlusion of the left descending coronary artery (LDCA) followed by 60-min restoration of coronary blood flow (reperfusion). IP was modeled by three cycles of 5-min occlusion/5-min reperfusion of the LDCA before prolonged regional myocardial ischemia and reperfusion. Metilin (5 mg/kg) was administered to rats intravenously by bolus injection 30 min before LDCA occlusion. IP or metilin had a significant impact on the studied parameters. The size of necrotic damage to the left ventricle, expressed as the percentage ratio of myocardial infarction/myocardial area at risk (MI/AAR, %), at the end of reperfusion was 26.9±2.0% and 29.3±2.6%, respectively, compared with 43.8±1.2% in the control (p < 0.01). The activity of creatine kinase-MB (CK-MB) in blood plasma decreased to 1026.1±93.9 IU/ml and 1195.2±142.0 IU/ml, respectively, compared with 1986.3±193.7 IU/ml in the control (p < 0.02). Administration of metilin, as well as IP, increased the reduced content of ATP, total adenine nucleotide pool (ΣAN) and phosphocreatine (PCr) in the AAR at the end of reperfusion compared to the control (p < 0.05–0.01). In the metilin group, the content of total creatine (ΣCr) in AAR was higher than in the control (p < 0.05). Intravenous administration of 5 mg/kg 5-hydroxydecanoate (5HD), an inhibitor of mitochondrial ATP-dependent K+ channels (mitoKATP), abolished the preconditioning effect of metilin, and increased the MI/AAR, %, and plasma CK-MB activity to values that insignificantly differed from the control (39.4±2.8% and 2258.2±179.1 IU/ml, respectively). Simultaneously, 5HD significantly reduced the ATP and ΣAN levels in AAR compared to those in the metilin group and the ATP, ΣAN, and PCr levels compared to the IP group. The results indicate that pharmacological preconditioning by metilin reduced cardiac ischemia/reperfusion injury via the involvement of mitoKATP in the mechanism of metilin action.
Download PDF:
Keywords: metilin, rat heart, preconditioning, myocardial infarction, creatine kinase-MB, energy state of the myocardial area at risk
Citation:
Veselova O.M., Serebryakova L.I., Studneva I.M., Azmuko A.A., Avdeev A.V., Sidorova M.V., Pisarenko O.I. (2025) The preconditioning effect of a structural analogue of apelin-12 in a rat model of acute myocardial infarction. Biomeditsinskaya Khimiya, 71(5), 342-350.
Veselova O.M. et al. The preconditioning effect of a structural analogue of apelin-12 in a rat model of acute myocardial infarction // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 5. - P. 342-350.
Veselova O.M. et al., "The preconditioning effect of a structural analogue of apelin-12 in a rat model of acute myocardial infarction." Biomeditsinskaya Khimiya 71.5 (2025): 342-350.
Veselova, O. M., Serebryakova, L. I., Studneva, I. M., Azmuko, A. A., Avdeev, A. V., Sidorova, M. V., Pisarenko, O. I. (2025). The preconditioning effect of a structural analogue of apelin-12 in a rat model of acute myocardial infarction. Biomeditsinskaya Khimiya, 71(5), 342-350.
References
Murry C.E., Jennings R.B., Reimer K.A. (1986) Preconditioning with ischemia: a delay of lethal injury in ischemic myocardium. Circulation, 74(5), 1124–1136. CrossRef Scholar google search
Basati G., Sepahvand H., Ghanadi P., Abbaszadeh S., Sedighi M. (2020) Pharmacology for preconditioning in clinical studies. Res. J. Pharm. Technol., 13(8), 4015–4022. CrossRef Scholar google search
Cohen M.V., Downey J.M. (2015) Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future. Br. J. Pharmacol., 172(8), 1913–1932. CrossRef Scholar google search
Sack M.N., Murphy E. (2011) The role of comorbidities in cardioprotection. J. Cardiovasc. Pharmacol. Ther., 16(3–4), 267–272. CrossRef Scholar google search
Ferdinandy P., Schulz R., Baxter G.F. (2007) Interaction of cardiovascular risk factors with myocardial ischemia/ reperfusion injury, preconditioning, and postconditioning. Pharmacol. Rev., 59(4), 418–458. CrossRef Scholar google search
Kinjo T., Higash H., Un K., Kuramoto N. (2021) Apelin/apelin receptor system molecular characteristics, physiological roles, and prospects as a target for disease prevention and pharmacotherapy. Curr. Mol. Pharmacol., 14(2), 210–221. CrossRef Scholar google search
Ashley E.A., Powers J., Chen M., Kundu R., Finsterbach T., Caffarelli A., Deng A., Eichhorn J., Mahajan R., Agrawal R., Greve J., Robbins R., Patterson A.J., Bernstein D., Quertermous T. (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc. Res., 65(1), 73–82. CrossRef Scholar google search
Sidorova M.V., Az’muko A.A., Pal’keeva M.E., Molokoedov A.S., Bushuev V.N., Dvoryantsev S.N., Shulzhenko V.S., Pelogeykina Yu.A., Pisarenko O.I., Bespalova Zh.D. (2012) Synthesis and cardioprotective properties of apelin-12 and its structural analogs. Russ. J. Bioorg. Chem., 38(1), 30–40. CrossRef Scholar google search
Pisarenko O., Shulzhenko V., Studneva I., Pelogeykina Y., Timoshin A., Anesia R., Valet P., Parini A., Kunduzova O. (2015) Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia-reperfusion injury. Br. J. Pharmacol., 172, 2933–2945. CrossRef Scholar google search
Pisarenko O.I., Studneva I.M. (2023) C-terminal fragments of apelin: biological properties and therapeutic potential. Biochemistry (Moscow), 88(11), 2271–2288. CrossRef Scholar google search
Studneva I.M., Veselova O.M., Dobrokhotov I.V., Serebryakova L.I., Palkeeva M.E., Avdeev D.V., Molokoedov A.S., Sidorova M.V., Pisarenko O.I. (2024) The structural analogue of apelin-12 prevents energy disorders in the heart in experimental type 1 diabetes mellitus. Biomeditsinskaya Khimiya, 70(3), 135–144. CrossRef Scholar google search
Valtchanova-Matchouganska A., Gondwe M., Nadar A. (2004) The role of C-reactive protein in ischemia/reperfusion injury and preconditioning in a rat model of myocardial infarction. Life Sci., 75(8), 901–910. CrossRef Scholar google search
Klimova M.V., Molokoedov A.S., Ovchinnikov M.V., Palkeeva M.E., Kozhokar Yu.S., Avdeev D.V., Sidorova M.V. (2025) Comparison of alternative piperidine deblocking agents in the solid-phase synthesis of ingramon and methylin. Russ. J. Bioorg. Chem., 51(4), 1725–1733. CrossRef Scholar google search
Schultz J.E., Qian Y.Z., Gross G.J., Kukreja R.C. (1997) The ischemia-selective KATP channel antagonist, 5-hydroxydecanoate, blocks ischemic preconditioning in the rat heart. J. Mol. Cell. Cardiol., 29(3), 1055–1060. CrossRef Scholar google search
Schulzhenko V.S., Serebryakova L.I., Studneva I.M., Pelogeykina Yu.A., Veselova O.M., Molokoedov A.S., Ovchinnikov M.V., Palkeeva M.E., Sidorova M.V. (2016) Ability of N-terminal fragment of neuropeptide galanin to attenuate ischemia and reperfusion injury of rat heart. Russian Cardiology Bulletin, 11(3), 12–21. Scholar google search
Bergmeyer H.U. (ed.) (1974) Methods of Enzymatic Analysis, 4th edn, New York, Academic Press, pp. 1196–1200, 1475–1478, 1772–1776, 1777–1781, 2101–2110. Scholar google search
Levchenkova O.S., Novikov V.E. (2016) Possibilities of pharmacological preconditioning. Annals of the Russian Academy of Medical Sciences, 71(1), 16–24. CrossRef Scholar google search
Yang S., Li H., Tang L., Ge G., Ma J., Qiao Z., Liu H., Fang W. (2015) Apelin-13 protects the heart against ischemiareperfusion injury through the RISK-GSK-3β-mPTP pathway. Arch. Med. Sci., 11(5), 1065–1073. CrossRef Scholar google search
Zeng X.J., Zhang L.K., Wang H.X., Lu L.Q., Ma L.Q., Tang C.S. (2009) Apelin protects heart against ischemia/reperfusion injury in rat. Peptides, 30(6), 1144–1152. CrossRef Scholar google search
Wang C., Du J.-F., Wu F., Wang H.-C. (2008) Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol., 294(6), H2540–H2546. CrossRef Scholar google search
Abbasloo E., Najafipour H., Vakili A. (2020) Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin. Exper. Pharmacol. Physiol., 47(3), 393–402. CrossRef Scholar google search
Pisarenko O.I., Shulzhenko V.S., Pelogeykina Yu.A., Studneva I.M. (2015) Enhancement of crystalloid cardioplegic protection by structural analogs of apelin-12. J. Surg. Res., 194(1), 18–24. CrossRef Scholar google search
Wang C., Liu N., Luan R., Li Y., Wang D., Zou W., Xing Y., Tao L., Cao F., Wang H. (2013) Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemiareperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. Cardiovasc. Res., 100(1), 114–124. CrossRef Scholar google search
Pisarenko O.I., Shulzhenko V.S., Pelogeykina Yu.A., Studneva I.M., Khatri D.N. (2010) Apelin-12 improves metabolic and functional recovery of rat heart after global ischemia. Health, 2(8), 927–934. CrossRef Scholar google search
Simpkin J.C., Yellon D.M., Davidson S.M., Lim S.Y., Wynne A.M., Smith C.C.T. (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemiareperfusion injury. Basic Res. Cardiol., 102(6), 518–528. CrossRef Scholar google search
Pelogeykina Yu.A., Serebryakova L.I., Studneva I.M., Khatri D.N., Tskitishvili O.V., Az’muko A.A., Sidorova M.V., Palkeeva M.V., Bespalova Sh.D., Pisarenko O.I. (2012) Effect of C-terminal fragment of adipokine apelin on experimental cardiac ischemic and reperfusion damage. Russian Cardiology Bulletin, 7(2), 29–35. Scholar google search
Ardehali H., O’Rourke B. (2005) Mitochondrial K(ATP) channels in cell survival and death. J. Mol. Cell. Cardiol., 39(1), 7–16. CrossRef Scholar google search
Tinker A., Aziz Q., Thomas A. (2014) The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br. J. Pharmacol., 171(1), 12–23. CrossRef Scholar google search
Pisarenko O.I., Shulzhenko V.S., Studneva I.M., Serebryakova L.I., Pelogeykina Yu.A., Veselova O.M. (2015) Signaling pathways of a structural analogue of apelin-12 involved in myocardial protection against ischemia/reperfusion injury. Peptides, 73, 67–76. CrossRef Scholar google search
Rastaldo R., Cappello S., Folino A., Berta G.N., Sprio A.E., Losano G., Samaja M., Pagliaro P. (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am. J. Physiol. Heart Circ. Physiol., 300(6), H2308–H2315. CrossRef Scholar google search
Tao J., Zhu W., Li Y., Xin P., Li J., Liu M., Li J., Redington A.N., Wei M. (2011) Apelin-13 protects the heart against ischemiareperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am. J. Physiol. Heart Circ. Physiol., 301(4), H1471–H1486. CrossRef Scholar google search
Perjés Á., Skoumal R., Tenhunen O., Kónyi A., Simon M., Horváth I.G., Kerkelä R., Ruskoaho H., Szokodi I. (2014) Apelin increases cardiac contractility via protein kinase Cε- and extracellular signal-regulated kinase-dependent mechanisms. PLOS One, 9(4), e93473. CrossRef Scholar google search
Hanley P.J., Gopalan K.V., Lareau R.A., Srivastava D.K., Meltzer V.M., Daut J. (2003) β-Oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J. Physiol., 547(Pt 2), 387–393. CrossRef Scholar google search
Lim K.H.H., Javadov S.A., Das M., Clarke S.J., Suleiman M.S., Halestrap A.P. (2002) The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J. Physiol., 545(3), 961–974. CrossRef Scholar google search
Lopaschuk G.D. (1997) Alterations in fatty acid oxidation during reperfusion of the heart after myocardial ischemia. Am. J. Cardiol., 80(3A), 11A–16A. CrossRef Scholar google search
Japp A.G., Cruden N.L., Barnes G., van Gemeren N., Mathews J., Adamson J., Johnston N.R., Denvir M.A., Megson I.L., Flapan A.D., Newby D.E. (2010) Acute cardiovascular effects of apelin in humans: potential role in patients with chronic heart failure. Circulation, 121(16), 1818–1827. CrossRef Scholar google search
Chen H., Wan D., Wang L., Peng A., Xiao H., Petersen R.B., Liu C., Zheng L., Huang K. (2015) Apelin protects against acute renal injury by inhibiting TGF-β1. Biochim. Biophys. Acta, 1852(7), 1278–1287. CrossRef Scholar google search
Gu Q., Zhai L., Feng X., Chen J., Miao Z., Ren L., Qian X., Yu J., Li Y., Xu X., Liu C.-F. (2013) Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem. Int., 63(6), 535–540. CrossRef Scholar google search
Xin Q., Cheng B., Pan Y., Liu H., Yang C., Chen J., Bai B. (2015) Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides, 63, 55–62. CrossRef Scholar google search