1. Russian Center of Neurology and Neurosciences, Moscow, Russia 2. Russian Center of Neurology and Neurosciences, Moscow, Russia; M.V. Lomonosov Moscow State University, Moscow, Russia
Copper ions (Cu2+) at concentrations of 25–50 μM stimulate lipopolysaccharide (LPS)-induced nitric oxide (NO) production in glial cell cultures derived from rat cerebral cortex and containing both astrocytes and microglia. Addition of a higher Cu2+ concentration during LPS stimulation did not significantly increase NO in the incubation medium, while 200 μM Cu2+ decreased this parameter compared to LPS. Cu2+ ions at these concentrations decreased viability of cultured cells. Apparently, the decrease in cell viability is not associated with nitrite accumulation, because the addition of even 100 μM sodium nitrite to the culture medium did not reduce cell viability or affect the cytotoxicity of Cu2+. The study of microglial cells (using the IBA1 marker) revealed that in LPS-treated cultures, microglia had a predominantly flattened amoeboid morphology, characteristic of activated microglia. The LPS treatment also increased the cell body profile area and perimeter. At a concentration of 25 μM, Cu2+ ions did not affect the morphological changes in microglia associated with the inflammatory phenotype. It is possible that the copper-induced increase in LPS-induced NO production is mediated by astrocytes.
Stelmashook E.V., Genrikhs E.E., Alexandrova O.P., Lapieva A.E., Kapkaeva M.R., Isaev N.K. (2025) The effect of copper ions on cultured rat glial cells of the cerebral cortex under the action of lipopolysaccharide. Biomeditsinskaya Khimiya, 71(6), .
Stelmashook E.V. et al. The effect of copper ions on cultured rat glial cells of the cerebral cortex under the action of lipopolysaccharide // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 6. - P. .
Stelmashook E.V. et al., "The effect of copper ions on cultured rat glial cells of the cerebral cortex under the action of lipopolysaccharide." Biomeditsinskaya Khimiya 71.6 (2025): .
Stelmashook, E. V., Genrikhs, E. E., Alexandrova, O. P., Lapieva, A. E., Kapkaeva, M. R., Isaev, N. K. (2025). The effect of copper ions on cultured rat glial cells of the cerebral cortex under the action of lipopolysaccharide. Biomeditsinskaya Khimiya, 71(6), .
References
Wen Y., Zhao C., Chen J., Tian L., Wu B., Xie W., Dong T. (2024) Gandouling regulates ferroptosis and improves neuroinflammation in Wilson's disease through the LCN2/NLRP3 signaling pathway. J. Inflamm. Res., 17, 5599–5618. CrossRef Scholar google search
Zhou Q., Zhang Y., Lu L., Zhang H., Zhao C., Pu Y., Yin L. (2022) Copper induces microglia-mediated neuroinflammation through ROS/NF-κB pathway and mitophagy disorder. Food Chem. Toxicol., 168, 113369. CrossRef Scholar google search
Chen L.L., Fan Y.G., Zhao L.X., Zhang Q., Wang Z.Y. (2023) The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg. Chem., 131, 106301. CrossRef Scholar google search
Aloysius Dhivya M., Sulochana K.N., Bharathi Devi S.R. (2022) High glucose induced inflammation is inhibited by copper chelation via rescuing mitochondrial fusion protein 2 in retinal pigment epithelial cells. Cell. Signal., 92, 110244. CrossRef Scholar google search
Zhang L., Tsai I.C., Ni Z., Chen B., Zhang S., Cai L., Xu Q. (2024) Copper chelation therapy attenuates periodontitis inflammation through the cuproptosis/autophagy/lysosome axis. Int. J. Mol. Sci., 25(11), 5890. CrossRef Scholar google search
Guo H., Jing L., Xia C., Zhu Y., Xie Y., Ma X., Fang J., Wang Z., Zuo Z. (2024) Copper promotes LPS-induced inflammation via the NF-κB pathway in bovine macrophages. Biol. Trace Elem. Res., 202(12), 5479–5488. CrossRef Scholar google search
Deng H., Zhu S., Yang H., Cui H., Guo H., Deng J., Ren Z., Geng Y., Ouyang P., Xu Z., Deng Y., Zhu Y. (2023) The dysregulation of inflammatory pathways triggered by copper exposure. Biol. Trace Elem. Res., 201(2), 539–548. CrossRef Scholar google search
Rossi-George A., Guo C.J., Oakes B.L., Gow A.J. (2012) Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide. Nitric Oxide, 27(4), 201–209. CrossRef Scholar google search
Cuzzocrea S., Persichini T., Dugo L., Colasanti M., Musci G. (2003) Copper induces type II nitric oxide synthase in vivo. Free Radic. Biol. Med., 34(10), 1253–1262. CrossRef Scholar google search
Wei H., Frei B., Beckman J.S., Zhang W.J. (2011) Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo. Am. J. Physiol. Heart Circ. Physiol., 301(3), H712–H720. CrossRef Scholar google search
Craciun L., Muroy S.E., Saijo K. (2024) Role of copper during microglial inflammation. bioRxiv [Preprint], DOI: 10.1101/2024.09.18.613750. CrossRef Scholar google search
Goshi N., Morgan R.K., Lein P.J., Seker E. (2020) A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J. Neuroinflammation, 17(1), 155. CrossRef Scholar google search
Stelmashook E.V., Kapkaeva M.R., Rozanova N.A., Alexandrova O.P., Genrikhs E.E., Obmolov V.V., Novikova S.V. Isaev N.K. (2022) The in vitro effect of the neuroinflammation inducer on brain neurovascular unit components. J. Evol. Biochem. Phys., 58(3), 856–864. CrossRef Scholar google search
Stelmashook E.V., Alexandrova O.P., Genrikhs E.E., Novikova S.V., Salmina A.B., Isaev N.K. (2022) Effect of zinc and copper ions on cadmium-induced toxicity in rat cultured cortical neurons. J. Trace Elem. Med. Biol., 73, 27012. CrossRef Scholar google search
Karve I.P., Taylor J.M., Crack P.J. (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 173(4), 692–702. CrossRef Scholar google search
Genrikhs E.E., Shedenkova M.O., Voronkov D.N., Isaev N.K., Stelmashook E.V. (2024) Activation of microglia and astroglia in unilateral focal traumatic brain injury in rats. Bull. Exp. Biol. Med., 178(2), 196–201. CrossRef Scholar google search
Saura J., Angulo E., Ejarque A., Casadó V., Tusell J.M., Moratalla R., Chen J.-F., Schwarzschild M.A., Lluis C., Franco R., Serratosa J. (2005) Adenosine A2A receptor stimulation potentiates nitric oxide release by activated microglia. J. Neurochem., 95(4), 919–929. CrossRef Scholar google search
Saura J. (2007) Microglial cells in astroglial cultures: a cautionary note. J. Neuroinflammation., 4, 26. CrossRef Scholar google search
Coleman J.W. (2001) Nitric oxide in immunity and inflammation. Int. Immunopharmacol., 1(8), 1397–1406. CrossRef Scholar google search
Guzik T.J., Korbut R., Adamek-Guzik T. (2003) Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol., 54(4), 469–487. Scholar google search
Quintas C., Pinho D., Pereira C., Saraiva L., Gonçalves J., Queiroz G. (2014) Microglia P2Y6 receptors mediate nitric oxide release and astrocyte apoptosis. J. Neuroinflammation, 11, 141. CrossRef Scholar google search
More S., Choi D.-K. (2017) Neuroprotective role of atractylenolide-I in an in vitro and in vivo model of Parkinson's disease. Nutrients, 9(5), 451. CrossRef Scholar google search
Hwang J.H., Kumar V.R., Kang S.Y., Jung H.W., Park Y.-K. (2018) Effects of flower buds extract of Tussilago farfara on focal cerebral ischemia in rats and inflammatory response in bV2 microglia. Chin. J. Integr. Med., 24(11), 844–852. CrossRef Scholar google search
Galea E., Feinstein D.L., Reis D.J. (1992) Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA, 89(22), 10945–10949. CrossRef Scholar google search
Hamby M.E., Hewett J.A., Hewett S.J. (2006) TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia, 54(6), 566–577. CrossRef Scholar google search
Moriyama M., Fujitsuka S., Kawabe K., Takano K., Nakamura Y. (2018) Zinc potentiates lipopolysaccharideinduced nitric oxide production in cultured primary rat astrocytes. Neurochem. Res., 43(2), 363–374. CrossRef Scholar google search
Kim S., Son Y. (2021) Astrocytes stimulate microglial proliferation and M2 polarization in vitro through crosstalk between astrocytes and microglia. Int. J. Mol. Sci., 22(16), 8800. CrossRef Scholar google search
Colasanti M., Persichini T., Venturini G., Polticelli F., Musci G. (2000) Modulation of the nitric oxide pathway by copper in glial cells. Biochem. Biophys. Res. Commun., 275(3), 776–782. CrossRef Scholar google search
Zhang W., Yang X., Liu J., Pan Y., Zhang M., Chen L. (2022) Senescent phenotype of astrocytes leads to activation of BV2 microglia and N2a neuronal cells death. Molecules, 27(18), 5925. CrossRef Scholar google search
Canedo T., Portugal C.C., Socodato R., Almeida T.O., Terceiro A.F., Bravo J., Silva A.I., Magalhães J.D., Guerra-Gomes S., Oliveira J.F., Sousa N., Magalhães A., Relvas J.B., Summavielle T. (2021) Astrocyte-derived TNF and glutamate critically modulate microglia activation by methamphetamine. Neuropsychopharmacology, 46(13), 2358–2370. CrossRef Scholar google search
Silva A.I., Socodato R., Pinto C., Terceiro A.F., Canedo T., Relvas J.B., Saraiva M., Summavielle T. (2024) IL-10 and Cdc42 modulate astrocyte-mediated microglia activation in methamphetamine-induced neuroinflammation. Glia, 72(8), 1501–1517. CrossRef Scholar google search
Zanier E.R., Fumagalli S., Perego C., Pischiutta F., de Simoni M.G. (2015) Shape descriptors of the “never resting” microglia in three different acute brain injury models in mice. Intensive Care Med. Exp., 3(1), 39. CrossRef Scholar google search
Hanisch U.-K., Kettenmann H. (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci., 10(11), 1387–1394. CrossRef Scholar google search