Epidemiological studies indicate a consistent global increase, including in the Russian Federation, in the number of patients with cognitive impairments associated with neurodegenerative diseases and various affective disorders. In this context there is a clear need in the development of more effective therapeutic approaches for their corrections. Good evidence exists that regular physical activity improves cognitive functions and alleviates depression. Working muscles secrete biologically active substances known as myokines, which regulate muscle recovery and functions of internal organs, endocrine glands, the immune system, and the brain. This results in a coordinated response of organs and systems aimed at restoring functional activity of the body after physical exercises and improves memory and learning ability. Patients with cognitive impairments or depression are often unable to engage in regular physical activity due to physical limitations or decreased motivation. Therefore, pharmaceuticals that mimic the effects of muscle activity are a promising therapeutic option. One potential direction in this field could be the development of drugs based on the myokine irisin, which is produced during physical exercise and exerts a range of beneficial effects on cognitive function and mood. This review summarizes existing data on the effects of physical exercise on cognitive function in health and disease; it describes the physiological effects of irisin, and presents the proposed mechanisms of irisin action on cognitive function and symptoms of depression.
Gisina A.M., Yarygin K.N. (2025) The myokine irisin: effects on the brain and therapeutic potential in the treatment of depression and neurodegenerative diseases. Biomeditsinskaya Khimiya, 71(6), 379-399.
Gisina A.M. et al. The myokine irisin: effects on the brain and therapeutic potential in the treatment of depression and neurodegenerative diseases // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 6. - P. 379-399.
Gisina A.M. et al., "The myokine irisin: effects on the brain and therapeutic potential in the treatment of depression and neurodegenerative diseases." Biomeditsinskaya Khimiya 71.6 (2025): 379-399.
Gisina, A. M., Yarygin, K. N. (2025). The myokine irisin: effects on the brain and therapeutic potential in the treatment of depression and neurodegenerative diseases. Biomeditsinskaya Khimiya, 71(6), 379-399.
López-Lluch G., Rattan S.I.S. (2015) Facing challenges in an ageing world. Biogerontology, 16(5), 567–568. CrossRef Scholar google search
Herrman H., Kieling C., McGorry P., Horton R., Sargent J., Patel V. (2019) Reducing the global burden of depression: a Lancet-World Psychiatric Association Commission. Lancet, 393(10189), e42–e43. CrossRef Scholar google search
Friedrich M.J. (2017) Depression is the leading cause of disability around the world. JAMA, 317(15), 1517. CrossRef Scholar google search
Richmond-Rakerd L.S., d’Souza S., Milne B.J., Caspi A., Moffitt T.E. (2022) Longitudinal associations of mental disorders with dementia: 30-year analysis of 1.7 million New Zealand citizens. JAMA Psychiatry, 79(4), 333–340. CrossRef Scholar google search
Singh-Manoux A., Dugravot A., Fournier A., Abell J., Ebmeier K., Kivimäki M., Sabia S. (2017) Trajectories of depressive symptoms before diagnosis of dementia: a 28-year follow-up study. JAMA Psychiatry, 74(7), 712–718. CrossRef Scholar google search
Dafsari F.S., Jessen F. (2020) Depression — an underrecognized target for prevention of dementia in Alzheimer’s disease. Transl. Psychiatry, 10(1), 160. CrossRef Scholar google search
Lorenzetti V., Allen N.B., Fornito A., Yücel M. (2009) Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J. Affect. Disord., 117(1–2), 1–17. CrossRef Scholar google search
Cotter D., Mackay D., Chana G., Beasley C., Landau S., Everall I.P. (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb. Cortex, 12(4), 386–394. CrossRef Scholar google search
Duman R.S., Shinohara R., Fogaça M.V., Hare B. (2019) Neurobiology of rapid acting antidepressants: convergent effects on GluA1-synaptic function. Mol. Psychiatry, 24(12), 1816–1832. CrossRef Scholar google search
Kang H.J., Voleti B., Hajszan T., Rajkowska G., Stockmeier C.A., Licznerski P., Lepack A., Majik M.S., Jeong L.S., Banasr M., Son H., Duman R.S. (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med., 18(9), 1413–1417. CrossRef Scholar google search
Peng T.-C., Chen W.-L., Wu L.-W., Chang Y.-W., Kao T.-W. (2020) Sarcopenia and cognitive impairment: a systematic review and meta-analysis. Clin. Nutr., 39(9), 2695–2701. CrossRef Scholar google search
Sugimoto T., Ono R., Murata S., Saji N., Matsui Y., Niida S., Toba K., Sakurai T. (2016) Prevalence and associated factors of sarcopenia in elderly subjects with amnestic mild cognitive impairment or Alzheimer disease. Curr. Alzheimer Res., 13(6), 718–726. CrossRef Scholar google search
Tyndall A.V., Clark C.M., Anderson T.J., Hogan D.B., Hill M.D., Longman R.S., Poulin M.J. (2018) Protective effects of exercise on cognition and brain health in older adults. Exerc. Sport Sci. Rev., 46(4), 215–223. CrossRef Scholar google search
Cassilhas R.C., Tufik S., de Mello M.T. (2015) Physical exercise, neuroplasticity, spatial learning and memory. Cell. Mol. Life Sci., 73(5), 975–983. CrossRef Scholar google search
de Sousa R.A.L., Rocha-Dias I., de Oliveira L.R.S., Improta-Caria A.C., Monteiro-Junior R.S., Cassilhas R.C. (2021) Molecular mechanisms of physical exercise on depression in the elderly: a systematic review. Mol. Biol. Rep., 48(4), 3853–3862. CrossRef Scholar google search
Wong-Goodrich S.J.E., Pfau M.L., Flores C.T., Fraser J.A., Williams C.L., Jones L.W. (2010) Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res., 70(22), 9329–9338. CrossRef Scholar google search
Pietropaolo S., Sun Y., Li R., Brana C., Feldon J., Yee B.K. (2008) The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective. Behav. Brain Res., 192(1), 42–60. CrossRef Scholar google search
Heissel A., Heinen D., Brokmeier L.L., Skarabis N., Kangas M., Vancampfort D., Stubbs B., Firth J., Ward P.B., Rosenbaum S., Hallgren M., Schuch F. (2023) Exercise as medicine for depressive symptoms? A systematic review and meta-analysis with meta-regression. Br. J. Sports Med., 57(16), 1049–1057. CrossRef Scholar google search
Noetel M., Sanders T., Gallardo-Gómez D., Taylor P., del Pozo Cruz B., van den Hoek D., Smith J.J., Mahoney J., Spathis J., Moresi M., Pagano R., Pagano L., Vasconcellos R., Arnott H., Varley B., Parker P., Biddle S., Lonsdale C. (2024) Effect of exercise for depression: systematic review and network meta-analysis of randomised controlled trials. BMJ, 384, e075847. CrossRef Scholar google search
Hu M.X., Turner D., Generaal E., Bos D., Ikram M.K., Ikram M.A., Cuijpers P., Penninx B.W.J.H. (2020) Exercise interventions for the prevention of depression: a systematic review of meta-analyses. BMC Public Health, 20(1), 1255. CrossRef Scholar google search
Singh B., Bennett H., Miatke A., Dumuid D., Curtis R., Ferguson T., Brinsley J., Szeto K., Eglitis E., Zhou M., Simpson C.E.M., Petersen J.M., Firth J., Maher C.A. (2025) Systematic umbrella review and meta-meta-analysis: effectiveness of physical activity in improving depression and anxiety in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry, S0890-8567(25)00208-4. CrossRef Scholar google search
Hamer M., Chida Y. (2009) Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol. Med., 39(1), 3–11. CrossRef Scholar google search
Nichol K.E., Poon W.W., Parachikova A.I., Cribbs D.H., Glabe C.G., Cotman C.W. (2008) Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J. Neuroinflammation, 5, 13. CrossRef Scholar google search
Little H.C., Tan S.Y., Cali F.M., Rodriguez S., Lei X., Wolfe A., Hug C., Wong G.W. (2018) Multiplex quantification identifies novel exercise-regulated myokines/cytokines in plasma and in glycolytic and oxidative skeletal muscle. Mol. Cell. Proteomics, 17(8), 1546–1563. CrossRef Scholar google search
Eaton M., Granata C., Barry J., Safdar A., Bishop D., Little J.P. (2018) Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. J. Sport Health Sci., 7(2), 191–196. CrossRef Scholar google search
Cai L., Tan M., Tan W., Zeng X., Wan N., Wong S.H.-S., O’Reilly J., Sun F., Yang J., Chen Y. (2019) Associations of circulating irisin concentrations with cardiometabolic risk factors among children vary by physical activity or sedentary time levels. Front. Endocrinol., 10, 549. CrossRef Scholar google search
Bettariga F., Taaffe D.R., Galvão D.A., Lopez P., Bishop C., Markarian A.M., Natalucci V., Kim J.-S., Newton R.U. (2024) Exercise training mode effects on myokine expression in healthy adults: a systematic review with meta-analysis. J. Sport Health Sci., 13(6), 764–779. CrossRef Scholar google search
Cordingley D.M., Anderson J.E., Cornish S.M. (2023) Myokine response to blood-flow restricted resistance exercise in younger and older males in an untrained and resistance-trained state: a pilot study. J. Sci. Sport Exerc., 5, 203–217. CrossRef Scholar google search
Vints W.A.J., Šeikinaitė J., Gökçe E., Kušleikienė S., Šarkinaite M., Valatkeviciene K., Česnaitienė V.J., Verbunt J., Levin O., Masiulis N (2024) Resistance exercise effects on hippocampus subfield volumes and biomarkers of neuroplasticity and neuroinflammation in older adults with low and high risk of mild cognitive impairment: a randomized controlled trial. GeroScience, 46(4), 3971–3991. CrossRef Scholar google search
Morishita S., Tsubaki A., Nakamura M., Nashimoto S., Fu J.B., Onishi H. (2019) Rating of perceived exertion on resistance training in elderly subjects. Expert Rev. Cardiovasc. Ther., 17(2), 135–142. CrossRef Scholar google search
Kim Y.-P., Kim H.-B., Jang M.-H., Lim B.-V., Kim Y.-J., Kim H., Kim S.-S., Kim E.-H., Kim C.-J. (2003) Magnitude- and time-dependence of the effect of treadmill exercise on cell proliferation in the dentate gyrus of rats. Int. J. Sports Med., 24(2), 114–117. CrossRef Scholar google search
Blumenthal J.A., Babyak M.A., Doraiswamy P.M., Watkins L., Hoffman B.M., Barbour K.A., Herman S., Craighead W.E., Brosse A.L., Waugh R., Hinderliter A., Sherwood A. (2007) Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom. Med., 69(7), 587–596. CrossRef Scholar google search
Lee J., Gierc M., Vila-Rodriguez F., Puterman E., Faulkner G. (2021) Efficacy of exercise combined with standard treatment for depression compared to standard treatment alone: a systematic review and meta-analysis of randomized controlled trials. J. Affect. Disord., 295, 1494–1511. CrossRef Scholar google search
Mammen G., Faulkner G. (2013) Physical activity and the prevention of depression: a systematic review of prospective studies. Am. J. Prev. Med., 45(5), 649–657. CrossRef Scholar google search
Pearce M., Garcia L., Abbas A., Strain T., Schuch F.B., Golubic R., Kelly P., Khan S., Utukuri M., Laird Y., Mok A., Smith A., Tainio M., Brage S., Woodcock J. (2022) Association between physical activity and risk of depression: a systematic review and meta-analysis. JAMA Psychiatry, 79(6), 550–559. CrossRef Scholar google search
Cunha M.P., Oliveira Á., Pazini F.L., Machado D.G., Bettio L.E.B., Budni J., Aguiar A.S., Martins D.F., Santos A.R.S., Rodrigues A.L.S. (2013) The antidepressantlike effect of physical activity on a voluntary running wheel. Med. Sci. Sports Exerc., 45(5), 851–859. CrossRef Scholar google search
Lin T.-W., Kuo Y.-M. (2013) Exercise benefits brain function: the monoamine connection. Brain Sci., 3(1), 39–53. CrossRef Scholar google search
Euteneuer F., Dannehl K., del Rey A., Engler H., Schedlowski M., Rief W. (2017) Immunological effects of behavioral activation with exercise in major depression: an exploratory randomized controlled trial. Transl. Psychiatry, 7(5), e1132. CrossRef Scholar google search
Sigwalt A.R., Budde H., Helmich I., Glaser V., Ghisoni K., Lanza S., Cadore E.L., Lhullier F.L.R., de Bem A.F., Hohl A., de Matos F.J., de Oliveira P.A., Prediger R.D., Guglielmo L.G., Latini A. (2011) Molecular aspects involved in swimming exercise training reducing anhedonia in a rat model of depression. Neuroscience, 192, 661–674. CrossRef Scholar google search
Luca M., Luca A. (2019) Oxidative stress-related endothelial damage in vascular depression and vascular cognitive impairment: beneficial effects of aerobic physical exercise. Oxid. Med. Cell. Longev., 2019, 8067045. CrossRef Scholar google search
Brocardo P.S., Boehme F., Patten A., Cox A., Gil-Mohapel J., Christie B.R. (2012) Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: protective effects of voluntary physical exercise. Neuropharmacology, 62(4), 1607–1618. CrossRef Scholar google search
Liang X., Tang J., Qi Y.-Q., Luo Y.-M., Yang C.-M., Dou X.-Y., Jiang L., Xiao Q., Zhang L., Chao F.-L., Zhou C.-N., Tang Y. (2022) Exercise more efficiently regulates the maturation of newborn neurons and synaptic plasticity than fluoxetine in a CUS-induced depression mouse model. Exp. Neurol., 354, 114103. CrossRef Scholar google search
Liang X., Tang J., Chao F.-L., Zhang Y., Chen L.-M., Wang F.-F., Tan C.-X., Luo Y.-M., Xiao Q., Zhang L., Qi Y.-Q., Jiang L., Huang C.-X., Gao Y., Tang Y. (2019) Exercise improves depressive symptoms by increasing the number of excitatory synapses in the hippocampus of CUS-induced depression model rats. Behav. Brain Res., 374, 112115. CrossRef Scholar google search
Micheli L., Ceccarelli M., d’Andrea G., Tirone F. (2018) Depression and adult neurogenesis: positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull., 143, 181–193. CrossRef Scholar google search
Steib K., Schäffner I., Jagasia R., Ebert B., Lie D.C. (2014) Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J. Neurosci., 34(19), 6624–6633. CrossRef Scholar google search
Meyer J.D., Koltyn K.F., Stegner A.J., Kim J.-S., Cook D.B. (2016) Relationships between serum BDNF and the antidepressant effect of acute exercise in depressed women. Psychoneuroendocrinology, 74, 286–294. CrossRef Scholar google search
Baj G., d’Alessandro V., Musazzi L., Mallei A., Sartori C.R., Sciancalepore M., Tardito D., Langone F., Popoli M., Tongiorgi E. (2012) Physical exercise and antidepressants enhance BDNF targeting in hippocampal CA3 dendrites: further evidence of a spatial code for BDNF splice variants. Neuropsychopharmacology, 37(7), 1600–1611. CrossRef Scholar google search
Teufel A., Malik N., Mukhopadhyay M., Westphal H. (2002) Frcp1 and Frcp2, two novel fibronectin type III repeat containing genes. Gene, 297(1–2), 79–83. CrossRef Scholar google search
Boström P., Wu J., Jedrychowski M.P., Korde A., Ye L., Lo J.C., Rasbach K.A., Boström E.A., Choi J.H., Long J.Z., Kajimura S., Zingaretti M.C., Vind B.F., Tu H., Cinti S., Højlund K., Gygi S.P., Spiegelman B.M. (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. CrossRef Scholar google search
Nie Y., Dai B., Guo X., Liu D. (2020) Cleavage of FNDC5 and insights into its maturation process. Mol. Cell. Endocrinol., 510, 110840. CrossRef Scholar google search
Schumacher M.A., Chinnam N., Ohashi T., Shah R.S., Erickson H.P. (2013) The structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J. Biol. Chem., 288(47), 33738–33744. CrossRef Scholar google search
Huh J.Y., Panagiotou G., Mougios V., Brinkoetter M., Vamvini M.T., Schneider B.E., Mantzoros C.S. (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism, 61(12), 1725–1738. CrossRef Scholar google search
Wojtaszewski J.F.P., Nielsen P., Hansen B.F., Richter E.A., Kiens B. (2000) Isoform-specific and exercise intensitydependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J. Physiol., 528(Pt 1), 221–226. CrossRef Scholar google search
Witczak C.A., Sharoff C.G., Goodyear L.J. (2008) AMP-activated protein kinase in skeletal muscle: from structure and localization to its role as a master regulator of cellular metabolism. Cell. Mol. Life Sci., 65(23), 3737–3755. CrossRef Scholar google search
Liang H., Ward W.F. (2006) PGC-1α: a key regulator of energy metabolism. Adv. Physiol. Educ., 30(4), 145–151. CrossRef Scholar google search
Dun S.L., Lyu R.-M., Chen Y.-H., Chang J.-K., Luo J.J., Dun N.J. (2013) Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience, 240, 155–162. CrossRef Scholar google search
Aydin S., Kuloglu T., Aydin S., Kalayci M., Yilmaz M., Cakmak T., Albayrak S., Gungor S., Colakoglu N., Ozercan I.H. (2014) A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides, 61, 130–136. CrossRef Scholar google search
Ruan Q., Huang Y., Yang L., Ruan J., Gu W., Zhang X., Zhang Y., Zhang W., Yu Z. (2019) The effects of both age and sex on irisin levels in paired plasma and cerebrospinal fluid in healthy humans. Peptides, 113, 41–51. CrossRef Scholar google search
Zhao R. (2022) Irisin at the crossroads of inter-organ communications: challenge and implications. Front. Endocrinol., 13, 989135. CrossRef Scholar google search
Jedrychowski M.P., Wrann C.D., Paulo J.A., Gerber K.K., Szpyt J., Robinson M.M., Nair K.S., Gygi S.P., Spiegelman B.M. (2015) Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab., 22(4), 734–740. CrossRef Scholar google search
Ruan Q., Zhang L., Ruan J., Zhang X., Chen J., Ma C., Yu Z. (2018) Detection and quantitation of irisin in human cerebrospinal fluid by tandem mass spectrometry. Peptides, 103, 60–64. CrossRef Scholar google search
Roca-Rivada A., Castelao C., Senin L.L., Landrove M.O., Baltar J., Belén Crujeiras A., Seoane L.M., Casanueva F.F., Pardo M. (2013) FNDC5/irisin is not only a myokine but also an adipokine. PLOS One, 8(4), e60563. CrossRef Scholar google search
Islam M.R., Valaris S., Young M.F., Haley E.B., Luo R., Bond S.F., Mazuera S., Kitchen R.R., Caldarone B.J., Bettio L.E.B., Christie B.R., Schmider A.B., Soberman R.J., Besnard A., Jedrychowski M.P., Kim H., Tu H., Kim E., Choi S.H., Tanzi R.E., Spiegelman B.M., Wrann C.D. (2021) Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab., 3(8), 1058–1070. CrossRef Scholar google search
Lee J.M., Sim T.H., Kim S.H., Choi Y.J., Lee J.H., Yeo S.G., Kim Y.-J. (2025) Exercise-induced FNDC5/irisin ameliorates cognitive impairment in aged mice, associated with antioxidant and neurotrophic responses. Antioxidants, 14(10), 1239. CrossRef Scholar google search
Wang Y., Tian M., Tan J., Pei X., Lu C., Xin Y., Deng S., Zhao F., Gao Y., Gong Y. (2022) Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. J. Neuroinflammation, 19, 82. CrossRef Scholar google search
Lee P., Linderman J.D., Smith S., Brychta R.J., Wang J., Idelson C., Perron R.M., Werner C.D., Phan G.Q., Kammula U.S., Kebebew E., Pacak K., Chen K.Y., Celi F.S. (2014) Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab., 19(2), 302–309. CrossRef Scholar google search
Waseem R., Shamsi A., Mohammad T., Hassan M.I., Kazim S.N., Chaudhary A.A., Rudayni H.A., Al-Zharani M., Ahmad F., Islam A. (2022) FNDC5/irisin: physiology and pathophysiology. Molecules, 27(3), 1118. CrossRef Scholar google search
Pang M., Yang J., Rao J., Wang H., Zhang J., Wang S., Chen X., Dong X. (2018) Time-dependent changes in increased levels of plasma irisin and muscle PGC-1α and FNDC5 after exercise in mice. Tohoku J. Exp. Med., 244(2), 93–103. CrossRef Scholar google search
Babaei A., Nourshahi M., Fani M., Entezari Z., Jameie S.B., Haghparast A. (2021) The effectiveness of continuous and interval exercise preconditioning against chronic unpredictable stress: involvement of hippocampal PGC-1α/FNDC5/BDNF pathway. J. Psychiatr. Res., 136, 173–183. CrossRef Scholar google search
Brenmoehl J., Albrecht E., Komolka K., Schering L., Langhammer M., Hoeflich A., Maak S. (2014) Irisin is elevated in skeletal muscle and serum of mice immediately after acute exercise. Int. J. Biol. Sci., 10(3), 338–349. CrossRef Scholar google search
Norheim F., Langleite T.M., Hjorth M., Holen T., Kielland A., Stadheim H.K., Gulseth H.L., Birkeland K.I., Jensen J., Drevon C.A. (2014) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J., 281(3), 739–749. CrossRef Scholar google search
Flori L., Testai L., Calderone V. (2021) The “irisin system”: from biological roles to pharmacological and nutraceutical perspectives. Life Sci., 267, 118954. CrossRef Scholar google search
Yen C.-H., Chang P.-S., Chang Y.-H., Lin P.-T. (2022) Identification of coenzyme Q10 and skeletal muscle protein biomarkers as potential factors to assist in the diagnosis of sarcopenia. Antioxidants, 11(4), 725. CrossRef Scholar google search
Kim H.-J., So B., Choi M., Kang D., Song W. (2015) Resistance exercise training increases the expression of irisin concomitant with improvement of muscle function in aging mice and humans. Exp. Gerontol., 70, 11–17. CrossRef Scholar google search
Tsou Y.-H., Wang B., Ho W., Hu B., Tang P., Sweet S., Zhang X.-Q., Xu X. (2019) Nanotechnology-mediated drug delivery for the treatment of obesity and its related comorbidities. Adv. Healthc. Mater., 8(12), e1801184. CrossRef Scholar google search
Pardo M., Crujeiras A.B., Amil M., Aguera Z., Jiménez-Murcia S., Baños R., Botella C., de la Torre R., Estivill X., Fagundo A.B., Fernández-Real J.M., Fernández-García J.C., Fruhbeck G., Gómez-Ambrosi J., Rodríguez R., Tinahones F.J., Fernández-Aranda F., Casanueva F.F. (2014) Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int. J. Endocrinol., 2014, 857270. CrossRef Scholar google search
Hecksteden A., Wegmann M., Steffen A., Kraushaar J., Morsch A., Ruppenthal S., Kaestner L., Meyer T. (2013) Irisin and exercise training in humans — results from a randomized controlled training trial. BMC Med., 11, 235. CrossRef Scholar google search
Tsuchiya Y., Ando D., Takamatsu K., Goto K. (2015) Resistance exercise induces a greater irisin response than endurance exercise. Metabolism, 64(9), 1042–1050. CrossRef Scholar google search
He Z., Tian Y., Valenzuela P.L., Huang C., Zhao J., Hong P., He Z., Yin S., Lucia A. (2018) Myokine response to high-intensity interval vs. resistance exercise: an individual approach. Front. Physiol., 9, 1735. CrossRef Scholar google search
Ruas J.L., White J.P., Rao R.R., Kleiner S., Brannan K.T., Harrison B.C., Greene N.P., Wu J., Estall J.L., Irving B.A., Lanza I.R., Rasbach K.A., Okutsu M., Nair K.S., Yan Z., Leinwand L.A., Spiegelman B.M. (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151(6), 1319–1331. CrossRef Scholar google search
Siteneski A., Cunha M.P., Lieberknecht V., Pazini F.L., Gruhn K., Brocardo P.S., Rodrigues A.L.S. (2018) Central irisin administration affords antidepressant-like effect and modulates neuroplasticity-related genes in the hippocampus and prefrontal cortex of mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 84(Pt A), 294–303. CrossRef Scholar google search
Pignataro P., Dicarlo M., Zerlotin R., Storlino G., Oranger A., Sanesi L., Lovero R., Buccoliero C., Mori G., Colaianni G., Colucci S., Grano M. (2022) Antidepressant effect of intermittent long-term systemic administration of irisin in mice. Int. J. Mol. Sci., 23(14), 7596. CrossRef Scholar google search
Bilek F., Cetisli-Korkmaz N., Ercan Z., Deniz G., Demir C.F. (2022) Aerobic exercise increases irisin serum levels and improves depression and fatigue in patients with relapsing remitting multiple sclerosis: a randomized controlled trial. Mult. Scler. Relat. Disord., 61, 103742. CrossRef Scholar google search
Tu W.-J., Qiu H.-C., Liu Q., Li X., Zhao J.-Z., Zeng X. (2018) Decreased level of irisin, a skeletal muscle cell-derived myokine, is associated with post-stroke depression in the ischemic stroke population. J. Neuroinflammation, 15, 133. CrossRef Scholar google search
Yardimci A., Ertugrul N.U., Ozgen A., Ozbeg G., Ozdede M.R., Ercan E.C., Canpolat S. (2023) Effects of chronic irisin treatment on brain monoamine levels in the hypothalamic and subcortical nuclei of adult male and female rats: an HPLC-ECD study. Neurosci. Lett., 806, 137245. CrossRef Scholar google search
Clelland C.D., Choi M., Romberg C., Clemenson G.D., Fragniere A., Tyers P., Jessberger S., Saksida L.M., Barker R.A., Gage F.H., Bussey TJ. (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210–213. CrossRef Scholar google search
Anacker C., Luna V.M., Stevens G.S., Millette A., Shores R., Jimenez J.C., Chen B., Hen R. (2018) Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 559(7712), 98–102. CrossRef Scholar google search
Tapia-Rojas C., Aranguiz F., Varela-Nallar L., Inestrosa N.C. (2016) Voluntary running attenuates memory loss, decreases neuropathological changes and induces neurogenesis in a mouse model of Alzheimer’s disease. Brain Pathol., 26(1), 62–74. CrossRef Scholar google search
Moreno-Jiménez E.P., Flor-García M., Terreros-Roncal J., Rábano A., Cafini F., Pallas-Bazarra N., Ávila J., Llorens-Martín M. (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat. Med., 25(4), 554–560. CrossRef Scholar google search
McAvoy K.M., Scobie K.N., Berger S., Russo C., Guo N., Decharatanachart P., Vega-Ramirez H., Miake-Lye S., Whalen M., Nelson M., Bergami M., Bartsch D., Hen R., Berninger B., Sahay A. (2016) Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron, 91(6), 1356–1373. CrossRef Scholar google search
Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., van Eldik L., Berry R., Vassar R. (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J. Neurosci., 26(40), 10129–10140. CrossRef Scholar google search
Hashemi M.-S., Ghaedi K., Salamian A., Karbalaie K., Emadi-Baygi M., Tanhaei S., Nasr-Esfahani M.H., Baharvand H. (2013) Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience, 231, 296–304. CrossRef Scholar google search
Forouzanfar M., Rabiee F., Ghaedi K., Beheshti S., Tanhaei S., Shoaraye Nejati A., Jodeiri Farshbaf M., Baharvand H., Nasr-Esfahani M.H. (2015) Fndc5 overexpression facilitated neural differentiation of mouse embryonic stem cells. Cell Biol. Int., 39(5), 629–637. CrossRef Scholar google search
Ebadi R., Rabiee F., Kordi-Tamandani D.M., Nasr-Esfahani M.H., Ghaedi K. (2021) Fndc5 knockdown significantly decreased the expression of neurotrophins and their respective receptors during neural differentiation of mouse embryonic stem cells. Human Cell, 34(3), 847–861. CrossRef Scholar google search
Lourenco M.V., Frozza R.L., de Freitas G.B., Zhang H., Kincheski G.C., Ribeiro F.C., Gonçalves R.A., Clarke J.R., Beckman D., Staniszewski A., Berman H., Guerra L.A., Forny-Germano L., Meier S., Wilcock D.M., de Souza J.M., Alves-Leon S., Prado V.F., Prado M.A.M., Abisambra J.F., Tovar-Moll F., Mattos P., Arancio O., Ferreira S.T., de Felice F.G. (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models. Nat. Med., 25(1), 165–175. CrossRef Scholar google search
Lourenco M.V., de Freitas G.B., Raony H., Ferreira S.T., de Felice F.G. (2022) Irisin stimulates protective signaling pathways in rat hippocampal neurons. Front. Cell. Neurosci., 16, 953991. CrossRef Scholar google search
Chen K., Wang K., Wang T. (2022) Protective effect of irisin against Alzheimer's disease. Front. Psychiatry, 13, 967683. CrossRef Scholar google search
Lourenco M.V., Ribeiro F.C., Sudo F.K., Drummond C., Assunção N., Vanderborght B., Tovar-Moll F., Mattos P., de Felice F.G., Ferreira S.T. (2020) Cerebrospinal fluid irisin correlates with amyloid-β, BDNF, and cognition in Alzheimer's disease. Alzheimers Dement. (Amsterdam), 12, e12034. CrossRef Scholar google search
Gonçalves R.A., Sudo F.K., Lourenco M.V., Drummond C., Assunção N., Vanderborght B., Ferreira D.D.P., Ribeiro F.C., Pamplona F.A., Tovar-Moll F., Mattos P., Ferreira S.T., de Felice F.G. (2023) Cerebrospinal fluid irisin and lipoxin A4 are reduced in elderly Brazilian individuals with depression: insight into shared mechanisms between depression and dementia. Alzheimers Dement., 19(6), 2595–2604. CrossRef Scholar google search
Otte C., Gold S.M., Penninx B.W., Pariante C.M., Etkin A., Fava M., Mohr D.C., Schatzberg A.F. (2016) Major depressive disorder. Nat. Rev. Dis. Primers, 2, 16065. CrossRef Scholar google search
Schuch F.B., Vancampfort D., Firth J., Rosenbaum S., Ward P.B., Silva E.S., Hallgren M., Ponce de Leon A., Dunn A.L., Deslandes A.C., Fleck M.P., Carvalho A.F., Stubbs B. (2018) Physical activity and incident depression: a meta-analysis of prospective cohort studies. Am. J. Psychiatry, 175(7), 631–648. CrossRef Scholar google search
Pignataro P., Dicarlo M., Suriano C., Sanesi L., Zerlotin R., Storlino G., Oranger A., Zecca C., dell’Abate M.T., Mori G., Grano M., Colucci S., Colaianni G. (2023) Once-daily subcutaneous irisin administration mitigates depression- and anxiety-like behavior in young mice. Int. J. Mol. Sci., 24(7), 6715. CrossRef Scholar google search
Hou Z., Zhang J., Yu K., Song F. (2020) Irisin ameliorates the postoperative depressive-like behavior by reducing the surface expression of epidermal growth factor receptor in mice. Neurochem. Int., 135, 104705. CrossRef Scholar google search
Wang S., Pan J. (2016) Irisin ameliorates depressive-like behaviors in rats by regulating energy metabolism. Biochem. Biophys. Res. Commun., 474(1), 22–28. CrossRef Scholar google search
Ernst J., Hock A., Henning A., Seifritz E., Boeker H., Grimm S. (2017) Increased pregenual anterior cingulate glucose and lactate concentrations in major depressive disorder. Mol. Psychiatry, 22(1), 113–119. CrossRef Scholar google search
Chan K.L., Cathomas F., Russo S.J. (2019) Central and peripheral inflammation link metabolic syndrome and major depressive disorder. Physiology (Bethesda), 34(2), 123–133. CrossRef Scholar google search
Qin Y., Jiang X., Li W., Li J., Tian T., Zang G., Fang L., Zhou C., Xu B., Gong X., Huang C., Yang X., Bai M., Fan L., Xie P. (2019) Chronic mild stress leads to aberrant glucose energy metabolism in depressed Macaca fascicularis models. Psychoneuroendocrinology, 107, 59–69. CrossRef Scholar google search
Liu L., Zhou X., Zhang Y., Pu J., Yang L., Yuan S., Zhao L., Zhou C., Zhang H., Xie P. (2018) Hippocampal metabolic differences implicate distinctions between physical and psychological stress in four rat models of depression. Transl. Psychiatry, 8(1), 4. CrossRef Scholar google search
Chen G., Yang D., Yang Y., Li J., Cheng K., Tang G., Zhang R., Zhou J., Li W., Liu Z., Fan S., Xie P. (2015) Amino acid metabolic dysfunction revealed in the prefrontal cortex of a rat model of depression. Behav. Brain Res., 278, 286–292. CrossRef Scholar google search
Luo Y., Qiao X., Ma Y., Deng H., Xu C.C., Xu L. (2020) Disordered metabolism in mice lacking irisin. Sci. Rep., 10, 17368. CrossRef Scholar google search
Xiong X.-Q., Chen D., Sun H.-J., Ding L., Wang J.-J., Chen Q., Li Y.-H., Zhou Y.-B., Han Y., Zhang F., Gao X.-Y., Kang Y.-M., Zhu G.-Q. (2015) FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim. Biophys. Acta, 1852(9), 1867–1875. CrossRef Scholar google search
Moreno-Navarrete J.M., Ortega F., Serrano M., Guerra E., Pardo G., Tinahones F., Ricart W., Fernández-Real J.M. (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab., 98(4), E769–E778. CrossRef Scholar google search
Zhang W., Chang L., Zhang C., Zhang R., Li Z., Chai B., Li J., Chen E., Mulholland M. (2015) Irisin: a myokine with locomotor activity. Neurosci. Lett., 595, 7–11. CrossRef Scholar google search
Kleinridders A., Cai W., Cappellucci L., Ghazarian A., Collins W.R., Vienberg S.G., Pothos E.N., Kahn C.R. (2015) Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proc. Natl. Acad. Sci. USA, 112(11), 3463–3468. CrossRef Scholar google search
Kimbrell T.A., Ketter T.A., George M.S., Little J.T., Benson B.E., Willis M.W., Herscovitch P., Post R.M. (2002) Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biol. Psychiatry, 51(3), 237–252. CrossRef Scholar google search
Xin C., Liu J., Zhang J., Zhu D., Wang H., Xiong L., Lee Y., Ye J., Lian K., Xu C., Zhang L., Wang Q., Liu Y., Tao L. (2016) Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int. J. Obes., 40(3), 443–451. CrossRef Scholar google search
Lee H.J., Lee J.O., Kim N., Kim J.K., Kim H.I., Lee Y.W., Kim S.J., Choi J.-I., Oh Y., Kim J.H., Suyeon-Hwang, Park S.H., Kim H.S. (2015) Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol. Endocrinol., 29(6), 873–881. CrossRef Scholar google search
Zhang Y., Li R., Meng Y., Li S., Donelan W., Zhao Y., Qi L., Zhang M., Wang X., Cui T., Yang L.-J., Tang D. (2014) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 63(2), 514–525. CrossRef Scholar google search
Cao X., Li L.-P., Wang Q., Wu Q., Hu H.-H., Zhang M., Fang Y.-Y., Zhang J., Li S.-J., Xiong W.-C., Yan H.-C., Gao Y.-B., Liu J.-H., Li X.-W., Sun L.-R., Zeng Y.-N., Zhu X.-H., Gao T.-M. (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med., 19(6), 773–777. CrossRef Scholar google search
Rabiee F., Lachinani L., Ghaedi S., Nasr-Esfahani M.H., Megraw T.L., Ghaedi K. (2020) New insights into the cellular activities of Fndc5/irisin and its signaling pathways. Cell Biosci., 10, 51. CrossRef Scholar google search
Ribeiro D., Petrigna L., Pereira F.C., Muscella A., Bianco A., Tavares P. (2021) The impact of physical exercise on the circulating levels of BDNF and NT 4/5: a review. Int. J. Mol. Sci., 22(16), 8814. CrossRef Scholar google search
Mousavi K., Jasmin B.J. (2006) BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J. Neurosci., 26(21), 5739–5749. CrossRef Scholar google search
Aguado F., Carmona M.A., Pozas E., Aguiló A., Martínez-Guijarro F.J., Alcantara S., Borrell V., Yuste R., Ibañez C.F., Soriano E. (2003) BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl– co-transporter KCC2. Development, 130(7), 1267–1280. CrossRef Scholar google search
Marlatt M.W., Potter M.C., Lucassen P.J., van Praag H. (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev. Neurobiol., 72(6), 943–952. CrossRef Scholar google search
Tsai S.-F., Ku N.-W., Wang T.-F., Yang Y.-H., Shih Y.-H., Wu S.-Y., Lee C.-W., Yu M., Yang T.-T., Kuo Y.-M. (2018) Long-term moderate exercise rescues age-related decline in hippocampal neuronal complexity and memory. Gerontology, 64(6), 551–561. CrossRef Scholar google search
Sheldrick A., Camara S., Ilieva M., Riederer P., Michel T.M. (2017) Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals — a proof of concept study. Eur. Psychiatry, 46, 65–71. CrossRef Scholar google search
Zavvari F., Nahavandi A. (2020) Fluoxetine increases hippocampal neural survival by improving axonal transport in stress-induced model of depression male rats. Physiol. Behav., 227, 113140. CrossRef Scholar google search
Björkholm C., Monteggia L.M. (2016) BDNF — a key transducer of antidepressant effects. Neuropharmacology, 102, 72–79. CrossRef Scholar google search
Wrann C.D., White J.P., Salogiannnis J., Laznik-Bogoslavski D., Wu J., Ma D., Lin J.D., Greenberg M.E., Spiegelman B.M. (2013) Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab., 18(5), 649–659. CrossRef Scholar google search
Kim M.-H., Leem Y.-H. (2019) The effects of peripherallysubacute treatment with irisin on hippocampal dendritogenesis and astrocyte-secreted factors. J. Exerc. Nutr. Biochem., 23(4), 32–35. CrossRef Scholar google search
Wu L., Zhang T., Chen K., Lu C., Liu X.F., Zhou J.L., Huang Y.K., Yan H., Chen Y., Zhang C.J., Li J.F., Shi S.Q., Ren P., Huang X. (2021) Rapid antidepressant-like effect of Fructus Aurantii depends on cAMP-response element binding protein/brain-derived neurotrophic facto by mediating synaptic transmission. Phytother. Res., 35(1), 404–414. CrossRef Scholar google search
Cai M.-Y., Yang Z., Huang X.-J., Li J., Bao W.-Y., Hurilebagen, Wulanqiqige, Wuyunsiriguleng, Cui J.-W., Ma L.-Q. (2022) Mongolian medicine Areca Thirteen Pill (GY-13) improved depressive syndrome via upregulating cAMP/PKA/CREB/BDNF signaling pathway. J. Ethnopharmacol., 293, 115310. CrossRef Scholar google search
Ieraci A., Madaio A.I., Mallei A., Lee F.S., Popoli M. (2016) Brain-derived neurotrophic factor Val66Met human polymorphism impairs the beneficial exerciseinduced neurobiological changes in mice. Neuropsychopharmacology, 41(13), 3070–3079. CrossRef Scholar google search
Tu W.-J., Qiu H.-C., Cao J.-L., Liu Q., Zeng X.-W., Zhao J.-Z. (2018) Decreased concentration of irisin is associated with poor functional outcome in ischemic stroke. Neurotherapeutics, 15(4), 1158–1167. CrossRef Scholar google search
Zhang F., Hou G., Hou G., Wang C., Shi B., Zheng Y. (2021) Serum irisin as a potential biomarker for cognitive decline in vascular dementia. Front. Neurol., 12, 755046. CrossRef Scholar google search
Jin Z., Guo P., Li X., Ke J., Wang Y., Wu H. (2019) Neuroprotective effects of irisin against cerebral ischemia/reperfusion injury via Notch signaling pathway. Biomed. Pharmacother., 120, 109452. CrossRef Scholar google search
Song D., Chen X., Zhou N., Yuan Y., Geng S., Zhang C., Zhao Z., Wang X., Bao X., Lan X., Zhang X. (2023) Low-intensity pulsed ultrasound triggers a beneficial neuromodulation in dementia mice with chronic cerebral hypoperfusion via activation of hippocampal Fndc5/irisin signaling. J. Transl. Med., 21, 139. CrossRef Scholar google search
Asadi Y., Gorjipour F., Behrouzifar S., Vakili A. (2018) Irisin peptide protects brain against ischemic injury through reducing apoptosis and enhancing BDNF in a rodent model of stroke. Neurochem. Res., 43(8), 1549–1560. CrossRef Scholar google search
Li D.-J., Li Y.-H., Yuan H.-B., Qu L.-F., Wang P. (2017) The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism, 68, 31–42. CrossRef Scholar google search
Haapakoski R., Mathieu J., Ebmeier K.P., Alenius H., Kivimäki M. (2015) Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun., 49, 206–215. CrossRef Scholar google search
Pandey G.N., Rizavi H.S., Zhang H., Bhaumik R., Ren X. (2018) Abnormal protein and mRNA expression of inflammatory cytokines in the prefrontal cortex of depressed individuals who died by suicide. J. Psychiatry Neurosci., 43(6), 376–385. CrossRef Scholar google search
Lu Y., Ho C.S., Liu X., Chua A.N., Wang W., McIntyre R.S., Ho R.C. (2017) Chronic administration of fluoxetine and pro-inflammatory cytokine change in a rat model of depression. PLOS One, 12(10), e0186700. CrossRef Scholar google search
Franklin T.C., Xu C., Duman R.S. (2018) Depression and sterile inflammation: essential role of danger associated molecular patterns. Brain Behav. Immun., 72, 2–13. CrossRef Scholar google search
Xiao X., Zhang H., Ning W., Yang Z., Wang Y., Zhang T. (2022) Knockdown of FSTL1 inhibits microglia activation and alleviates depressive-like symptoms through modulating TLR4/MyD88/NF-κB pathway in CUMS mice. Exp. Neurol., 353, 114060. CrossRef Scholar google search
Askari H., Rajani S.F., Poorebrahim M., Haghi-Aminjan H., Raeis-Abdollahi E., Abdollahi M. (2018) A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: an introductory review. Pharmacol. Res., 129, 44–55. CrossRef Scholar google search
Jiang X., Shen Z., Chen J., Wang C., Gao Z., Yu S., Yu X., Chen L., Xu L., Chen Z., Ni W. (2020) Irisin protects against motor dysfunction of rats with spinal cord injury via adenosine 5′-monophosphate (AMP)-activated protein kinase-nuclear factor kappa-B pathway. Front. Pharmacol., 11, 582484. CrossRef Scholar google search
Wang K., Li H., Wang H., Wang J.-H., Song F., Sun Y. (2018) Irisin exerts neuroprotective effects on cultured neurons by regulating astrocytes. Mediators Inflamm., 2018, 9070341. CrossRef Scholar google search
Peng J., Deng X., Huang W., Yu J.-H., Wang J.-X., Wang J.-P., Yang S.-B., Liu X., Wang L., Zhang Y., Zhou X.-Y., Yang H., He Y.-Z., Xu F.-Y. (2017) Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS-NLRP3 inflammatory signaling pathway. Mol. Immunol., 91, 185–194. CrossRef Scholar google search
Yu Q., Li G., Ding Q., Tao L., Li J., Sun L., Sun X., Yang Y. (2020) Irisin protects brain against ischemia/reperfusion injury through suppressing TLR4/MyD88 pathway. Cerebrovasc.Dis., 49(4), 346–354. CrossRef Scholar google search
Duan H., Jing L., Xiang J., Ju C., Wu Z., Liu J., Ma X., Chen X., Liu Z., Feng J., Yan X. (2022) CD146 associates with Gp130 to control a macrophage pro-inflammatory program that regulates the metabolic response to obesity. Adv. Sci. (Weinheim), 9(13), e2103719. CrossRef Scholar google search
van den Bossche J., Baardman J., Otto N.A., van der Velden S., Neele A.E., van den Berg S.M., Luque-Martin R., Chen H.-J., Boshuizen M.C.S., Ahmed M., Hoeksema M.A., de Vos A.F., de Winther M.P. (2016) Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep., 17(3), 684–696. CrossRef Scholar google search
Xiong X.-Q., Geng Z., Zhou B., Zhang F., Han Y., Zhou Y.-B., Wang J.-J., Gao X.-Y., Chen Q., Li Y.-H., Kang Y.-M., Zhu G.-Q. (2018) FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism, 83, 31–41. CrossRef Scholar google search
Dong J., Dong Y., Dong Y., Chen F., Mitch W.E., Zhang L. (2016) Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int. J. Obes., 40(3), 434–442. CrossRef Scholar google search
Madhu L.N., Somayaji Y., Shetty A.K. (2022) Promise of irisin to attenuate cognitive dysfunction in aging and Alzheimer's disease. Ageing Res. Rev., 78, 101637. CrossRef Scholar google search
Mazur-Bialy A.I., Pocheć E., Zarawski M. (2017) Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Int. J. Mol. Sci., 18(4), 701. CrossRef Scholar google search
Pandya C.D., Howell K.R., Pillai A. (2013) Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 46, 214–223. CrossRef Scholar google search
Zuo C., Cao H., Song Y., Gu Z., Huang Y., Yang Y., Miao J., Zhu L., Chen J., Jiang Y., Wang F. (2022) Nrf2: an all-rounder in depression. Redox Biol., 58, 102522. CrossRef Scholar google search
Bhatt S., Nagappa A.N., Patil C.R. (2020) Role of oxidative stress in depression. Drug Discov. Today, 25(7), 1270–1276. CrossRef Scholar google search
Palta P., Samuel L.J., Miller E.R. 3rd, Szanton S.L. (2014) Depression and oxidative stress: results from a meta-analysis of observational studies. Psychosom. Med., 76(1), 12–19. CrossRef Scholar google search
Liu T., Zhong S., Liao X., Chen J., He T., Lai S., Jia Y. (2015) A meta-analysis of oxidative stress markers in depression. PLOS One, 10(10), e0138904. CrossRef Scholar google search
Eren I., Naziroğlu M., Demirdaş A. (2007) Protective effects of lamotrigine, aripiprazole and escitalopram on depressioninduced oxidative stress in rat brain. Neurochem. Res., 32(7), 1188–1195. CrossRef Scholar google search
Juszczyk G., Mikulska J., Kasperek K., Pietrzak D., Mrozek W., Herbet M. (2021) Chronic stress and oxidative stress as common factors of the pathogenesis of depression and Alzheimer’s disease: the role of antioxidants in prevention and treatment. Antioxidants, 10(9), 1439. CrossRef Scholar google search
Wang D., Zhai X., Chen P., Yang M., Zhao J., Dong J., Liu H. (2014) Hippocampal UCP2 is essential for cognition and resistance to anxiety but not required for the benefits of exercise. Neuroscience, 277, 36–44. CrossRef Scholar google search
Du R.-H., Wu F.-F., Lu M., Shu X.-D., Ding J.-H., Wu G., Hu G. (2016) Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol., 9, 178–187. CrossRef Scholar google search
Yu J., Cheng Y., Cui Y., Zhai Y., Zhang W., Zhang M., Xin W., Liang J., Pan X., Wang Q., Sun H. (2022) Anti-seizure and neuronal protective effects of irisin in kainic acid-induced chronic epilepsy model with spontaneous seizures. Neurosci. Bull., 38(11), 1347–1364. CrossRef Scholar google search
Cheng Y., Cui Y., Zhai Y., Xin W., Yu Y., Liang J., Li S., Sun H. (2021) Neuroprotective effects of exogenous irisin in kainic acid-induced status epilepticus. Front. Cell. Neurosci., 15, 738533. CrossRef Scholar google search
Guo P., Jin Z., Wang J., Sang A., Wu H. (2021) Irisin rescues blood-brain barrier permeability following traumatic brain injury and contributes to the neuroprotection of exercise in traumatic brain injury. Oxid. Med. Cell. Longev., 2021, 1118981. CrossRef Scholar google search
Kuro-o M., Matsumura Y., Aizawa H., Kawaguchi H., Suga T., Utsugi T., Ohyama Y., Kurabayashi M., Kaname T., Kume E. (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 390(6655), 45–51. CrossRef Scholar google search
Zhao Y., Zeng C.-Y., Li X.-H., Yang T.-T., Kuang X., Du J.-R. (2020) Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer's disease. Aging Cell, 19(10), e13239. CrossRef Scholar google search
Dubal D.B., Zhu L., Sanchez P.E., Worden K., Broestl L., Johnson E., Ho K., Yu G.-Q., Kim D., Betourne A., Kuro-o M., Masliah E., Abraham C.R., Mucke L. (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J. Neurosci., 35(6), 2358–2371. CrossRef Scholar google search
Semba R.D., Moghekar A.R., Hu J., Sun K., Turner R., Ferrucci L., O’Brien R. (2014) Klotho in the cerebrospinal fluid of adults with and without Alzheimer's disease. Neurosci. Lett., 558, 37–40. CrossRef Scholar google search
Erickson C.M., Schultz S.A., Oh J.M., Darst B.F., Ma Y., Norton D., Betthauser T., Gallagher C.L., Carlsson C.M., Bendlin B.B., Asthana S., Hermann B.P., Sager M.A., Blennow K., Zetterberg H., Engelman C.D., Christian B.T., Johnson S.C., Dubal D.B., Okonkwo O.C. (2019) KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology, 92(16), e1878–e1889. CrossRef Scholar google search
Jin Z., Zhang Z., Ke J., Wang Y., Wu H. (2021) Exercise-linked irisin prevents mortality and enhances cognition in a mice model of cerebral ischemia by regulating klotho expression. Oxid. Med. Cell. Longev., 2021, 1697070. CrossRef Scholar google search
Zarbakhsh S., Safari M., Aldaghi M.R., Sameni H.R., Ghahari L., Khaleghi Lagmouj Y., Rahimi Jaberi K., Parsaie H. (2019) Irisin protects the substantia nigra dopaminergic neurons in the rat model of Parkinson's disease. Iran. J. Basic Med. Sci., 22(7), 722–728. CrossRef Scholar google search
Zhang X., Xu S., Hu Y., Liu Q., Liu C., Chai H., Luo Y., Jin L., Li S. (2023) Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson's disease. NPJ Parkinsons Dis., 9, 13. CrossRef Scholar google search
Schneider A.L.C., Huie J.R., Boscardin W.J., Nelson L., Barber J.K., Yaffe K., Diaz-Arrastia R., Ferguson A.R., Kramer J., Jain S., Temkin N., Yuh E., Manley G.T., Gardner R.C. (2022) Cognitive outcome 1 year after mild traumatic brain injury: results from the TRACK-TBI study. Neurology, 98(12), e1248–e1261. CrossRef Scholar google search
Delaplain P.T., Albertson S., Grigorian A., Williams B., Smith M., Inaba K., Lekawa M., Nahmias J. (2020) Early cognitive impairment is common after intracranial hemorrhage with mild traumatic brain injury. J. Trauma Acute Care Surg., 89(1), 215–221. CrossRef Scholar google search
Keys M.E., Delaplain P., Kirby K.A., Boudreau K.I., Rosenbaum K., Inaba K., Lekawa M., Nahmias J. (2021) Early cognitive impairment is common in pediatric patients following mild traumatic brain injury. J. Trauma Acute Care Surg., 91(5), 861–866. CrossRef Scholar google search
Hagberg H., Mallard C., Rousset C.I., Thornton C. (2014) Mitochondria: hub of injury responses in the developing brain. Lancet Neurol., 13(2), 217–232. CrossRef Scholar google search
Chou S.H.-Y., Lan J., Esposito E., Ning M., Balaj L., Ji X., Lo E.H., Hayakawa K. (2017) Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke, 48(8), 2231–2237. CrossRef Scholar google search
Fan J., Zhu Q., Wu Z., Ding J., Qin S., Liu H., Miao P. (2020) Protective effects of irisin on hypoxia-reoxygenation injury in hyperglycemia-treated cardiomyocytes: role of AMPK pathway and mitochondrial protection. J. Cell. Physiol., 235(2), 1165–1174. CrossRef Scholar google search
Bi J., Zhang J., Ren Y., Du Z., Li Q., Wang Y., Wei S., Yang L., Zhang J., Liu C., Lv Y., Wu R. (2019) Irisin alleviates liver ischemia-reperfusion injury by inhibiting excessive mitochondrial fission, promoting mitochondrial biogenesis and decreasing oxidative stress. Redox Biol., 20, 296–306. CrossRef Scholar google search
Chen K., Xu Z., Liu Y., Wang Z., Li Y., Xu X., Chen C., Xia T., Liao Q., Yao Y., Zeng C., He D., Yang Y., Tan T., Yi J., Zhou J., Zhu H., Ma J., Zeng C. (2017) Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci. Transl. Med., 9(418), eaao6298. CrossRef Scholar google search
Tsukita K., Sakamaki-Tsukita H., Takahashi R. (2022) Long-term effect of regular physical activity and exercise habits in patients with early Parkinson disease. Neurology, 98(8), e859–e871. CrossRef Scholar google search
Johansson M.E., Cameron I.G.M., van der Kolk N.M., de Vries N.M., Klimars E., Toni I., Bloem B.R., Helmich R.C. (2022) Aerobic exercise alters brain function and structure in Parkinson’s disease: a randomized controlled trial. Ann. Neurol., 91(2), 203–216. CrossRef Scholar google search
Avgerinos K.I., Liu J., Dalamaga M. (2023) Could exercise hormone irisin be a therapeutic agent against Parkinson's and other neurodegenerative diseases? Metabol. Open, 17, 100233. CrossRef Scholar google search
Kam T.-I., Mao X., Park H., Chou S.-C., Karuppagounder S.S., Umanah G.E., Yun S.P., Brahmachari S., Panicker N., Chen R., Andrabi S.A., Qi C., Poirier G.G., Pletnikova O., Troncoso J.C., Bekris L.M., Leverenz J.B., Pantelyat A., Ko H.S., Rosenthal L.S., Dawson T.M., Dawson V.L. (2018) Poly(ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson's disease. Science, 362(6414), eaat8407. CrossRef Scholar google search
Kam T.-I., Park H., Chou S.-C., van Vranken J.G., Mittenbühler M.J., Kim H., A M., Choi Y.R., Biswas D., Wang J., Shin Y., Loder A., Karuppagounder S.S., Wrann C.D., Dawson V.L., Spiegelman B.M., Dawson T.M. (2022) Amelioration of pathologic α-synuclein-induced Parkinson's disease by irisin. Proc. Natl. Acad. Sci. USA, 119(36), e2204835119. CrossRef Scholar google search
Sleep D., Cameron J., Evans L.R. (2013) Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta, 1830(12), 5526–5534. CrossRef Scholar google search