Tumor necrosis factor-α (TNFα) is a key proinflammatory cytokine; its level increased in inflammatory diseases of the upper respiratory tract. In this study, the dose- and time-dependent effects of TNFα (1–100 ng/ml, 6–48 h) on the RPMI 2650 cell line, a model of nasal epithelium, have been investigated. Short-term exposure (6 h) caused activation of NF-κB and an increase in the levels of the intercellular contact proteins E-cadherin and ZO-1, without a significant effect on cell viability. Long-term exposure (24–48 h) led to an increase in the level of pro-IL-1β, activation of apoptosis, and a decrease in cell viability. At the same time, a decrease in the level of intercellular contact proteins was noted. Thus, short-term exposure to TNFα can exert a protective effect by increasing the density of intercellular contacts, while during prolonged exposure, it triggers apoptosis and reduces the density of intercellular contacts, which can contribute to increased permeability of the cell layer.
Abalenikhina Yu.V., Breslavets D.I., Solotnova S.O., Builina S.G., Shchulkin A.V., Yakusheva E.N. (2025) A biphasic effect of tumor necrosis factor-α on RPMI 2650 cell line in vitro. Biomeditsinskaya Khimiya, 71(6), .
Abalenikhina Yu.V. et al. A biphasic effect of tumor necrosis factor-α on RPMI 2650 cell line in vitro // Biomeditsinskaya Khimiya. - 2025. - V. 71. -N 6. - P. .
Abalenikhina Yu.V. et al., "A biphasic effect of tumor necrosis factor-α on RPMI 2650 cell line in vitro." Biomeditsinskaya Khimiya 71.6 (2025): .
Abalenikhina, Yu. V., Breslavets, D. I., Solotnova, S. O., Builina, S. G., Shchulkin, A. V., Yakusheva, E. N. (2025). A biphasic effect of tumor necrosis factor-α on RPMI 2650 cell line in vitro. Biomeditsinskaya Khimiya, 71(6), .
References
van Loo G., Bertrand M.J.M. (2023) Death by TNF: a road to inflammation. Nat. Rev. Immunol., 23(5), 289–303. CrossRef Scholar google search
Schütze S., Wiegmann K., Machleidt T., Krönke M. (1995) TNF-induced activation of NF-κB. Immunobiology, 193(2–4), 193–203. CrossRef Scholar google search
Wang L., Du F., Wang X. (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell, 133(4), 693–703. CrossRef Scholar google search
Keller L.A., Merkel O., Popp A. (2022) Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res., 12(4), 735–757. CrossRef Scholar google search
Aliautdin R.N.,Iezhitsa I.N., Agarval R. (2014) Transcorneal drug delivery: prospects for the use of liposomes. Russian Annals of Ophthalmology, 130(4), 117–122. Scholar google search
Bai S., Yang T., Abbruscato T.J., Ahsan F. (2008) Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J. Pharm. Sci., 97(3), 1165–1178. CrossRef Scholar google search
Kreft M.E., Jerman U.D., Lasič E., Lanišnik Rižner T., Hevir-Kene N., Peternel L., Kristan K. (2015) The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm. Res., 32(2), 665–679. CrossRef Scholar google search
Merkle H.P., Ditzinger G., Lang S.R., Peter H., Schmidt M.C. (1998) In vitro cell models to study nasal mucosal permeability and metabolism. Adv. Drug Deliv. Rev., 29(1–2), 51–79. CrossRef Scholar google search
Breslavecz D.I., Abalenixina Yu.V., Shhul`kin A.V., Bujlina S.G., Zolotova A.V., Yakusheva E.N. (2025) The relative number of intercellular contact proteins in the dynamics of the formation of a monolayer of cells of the RPMI2650 line. Technologies of Living Systems, 22(2), 58–65. Scholar google search
Demina O.M., Rumyantsev A.G., Karpova E.I. (2023) Signaling pathways of transcription factors and the role of genes in their regulation in severe acne. Immunologiya, 44(6), 764–775. CrossRef Scholar google search
Iacobazzi D., Convertini P., Todisco S., Santarsiero A., Iacobazzi V., Infantino V. (2023) New insights into NF-κB signaling in innate immunity: focus on immunometabolic crosstalks. Biology (Basel), 12(6), 776. CrossRef Scholar google search
Lopez-Castejon G., Brough D. (2011) Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev., 22(4), 189–195. CrossRef Scholar google search
Fujisawa T., Chang M.M.-J., Velichko S., Thai P., Hung L.-Y., Huang F., Phuong N., Chen Y., Wu R. (2011) NF-κB mediates IL-1β- and IL-17A-induced MUC5B expression in airway epithelial cells. Am. J. Respir. Cell Mol. Biol., 45(2), 246–252. CrossRef Scholar google search
Sadati S., Khalaji A., Bonyad A., Khoshdooz S., Hosseini Kolbadi K.S., Bahrami A., Moeinfar M.S., Morshedi M., Ghamsaraian A., Eterafi M., Eshraghi R., Khaksary Mahabady M., Mirzaei H. (2025) NF-κB and apoptosis: colorectal cancer progression and novel strategies for treatment. Eur. J. Med. Res., 30, 616. CrossRef Scholar google search
Peng T., Tao X., Xia Z., Hu S., Xue J., Zhu Q., Pan X., Zhang Q., Li S. (2022) Pathogen hijacks programmed cell death signaling by arginine ADPR-deacylization of caspases. Mol. Cell, 82(10), 1806–1820.e8. CrossRef Scholar google search
Heo J.W., Kim M.J., Yang Y.J., Choi H.N., Kim K.Y., Oh T.W., Yang J.-H., Kim Y.H., Park K.I. (2025) The role of tight junctions in the pathogenesis of inflammatory bowel disease: immune modulation and barrier dysfunction. Mol. Cell. Toxicol., 21(3), 495–506. CrossRef Scholar google search
Zihni C., Mills C., Matter K., Balda M.S. (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol., 17(9), 564–580. CrossRef Scholar google search
McKay D.M., Baird A.W. (1999) Cytokine regulation of epithelial permeability and ion transport. Gut, 44(2), 283–289. CrossRef Scholar google search