1. Sechenov University, Moscow, Russia 2. Tyumen State University, Tyumen, Russia 3. Sechenov University, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
Bacterial infections are a serious cause of high morbidity and mortality worldwide. Over the past decades, the drug resistance of bacterial pathogens has been steadily increasing, while the rate of development of new effective antibacterial drugs remains consistently low. The plant kingdom is sometimes called a bottomless well for the search for new antimicrobial therapies. This is due to the fact that plants are easily accessible and cheap to process, while extracts and components of plant origin often demonstrate a high level of biological activity with minor side effects. The variety of compounds obtained from plant raw materials can provide a wide choice of various chemical structures for interaction with various targets inside bacterial cells, while the rapid development of modern biotechnological tools opens the way to the targeted production of bioactive components with desired properties. The objective of this review is to answer the question, whether antimicrobials of plant origin have a chance to play the role of a panacea in the fight against infectious diseases in the “post-antibiotic era”.
Download PDF:
Keywords: secondary metabolites of plants, phyto metabolites, drug resistance, bacterial pathogens, antimicrobial properties
Citation:
Nesterovich V.M., Belykh D.A., Gorokhovets N.V., Kurbatov L.K., Zamyatnin A.A., Ikryannikova L.N. (2023) Secondary metabolites of plants and their possible role in the “age of superbugs”. Biomeditsinskaya Khimiya, 69(6), 371-382.
Nesterovich V.M. et al. Secondary metabolites of plants and their possible role in the “age of superbugs” // Biomeditsinskaya Khimiya. - 2023. - V. 69. -N 6. - P. 371-382.
Nesterovich V.M. et al., "Secondary metabolites of plants and their possible role in the “age of superbugs”." Biomeditsinskaya Khimiya 69.6 (2023): 371-382.
Nesterovich, V. M., Belykh, D. A., Gorokhovets, N. V., Kurbatov, L. K., Zamyatnin, A. A., Ikryannikova, L. N. (2023). Secondary metabolites of plants and their possible role in the “age of superbugs”. Biomeditsinskaya Khimiya, 69(6), 371-382.
References
Achan J., Talisuna A.O., Erhart A., Yeka A., Tibenderana J.K., Baliraine F.N., Rosenthal P.J., d’Alessandro U. (2011) Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malaria J., 10, 144. CrossRef Scholar google search
Li Y., Kong D., Fu Y., Sussman M.R., Wu H. (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant. Physiol. Biochem., 148, 80-89. CrossRef Scholar google search
Bilal M., Rasheed T., Iqbal H.M.N., Hu H., Wang W., Zhang X. (2017) Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int. J. Biol. Macromol., 103, 554-574. CrossRef Scholar google search
Arip M., Selvaraja M.R.M., Tan L.F., Leong M.Y., Tan P.L., Yap V.L., Chinnapan S., Tat N.C., Abdullah M.K.D., Jubair N. (2022) Review on plant-based management in combating antimicrobial resistance — mechanistic perspective. Front. Pharmacol., 13, 879495. CrossRef Scholar google search
El-Saadony M.T., Yang T., Imam M.S., Alghamdi S., Salem H.M., Korma S.A., Soliman S.M., Abd El-Mageed T.A., Selim S., Al Jaouni S.K., Mahmmod Y., El-Wafai N.A., Zaghloul R.A., Abd El-Hack M.E., Khafaga A.F., El-Tarabily K.A., Saad A.M. (2022) Medicinal plants as alternative antimicrobial agents to combating the multi-drug resistant human pathogens: Acomprehensive review. Front. Microbiol., 13, 998425. CrossRef Scholar google search
Kabera J.N., Semana E., Mussa A.R., He X. (2014) Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol., 2, 377-392. Scholar google search
Ashraf M.A., Iqbal M., Rasheed R., Hussain I., Riaz M., Arif M.S. (2018) Environmental stress and secondary metabolites in plants: An overview. In: Plant Metabolites and Regulation under Environmental Stress, Academic Press: Cambridge, MA, USA, Elsevier Inc.: Amsterdam, The Netherlands, pp. 153-167. CrossRef Scholar google search
Delgoda R., Murray J.E. (2017) Evolutionary perspectives on the role of plant secondary metabolites. In: Pharmacognosy. Fundamentals, Applications and Strategies, Academic Press: Cambridge, MA, USA, Elsevier Inc.: Amsterdam, The Netherlands, pp. 93-100. CrossRef Scholar google search
Anand U., Jacobo-Herrera N., Altemimi A., Lakhssassi N. (2019) A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 9, 258. CrossRef Scholar google search
Hussein R.A., El-Anssary A.A. (2018) Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. In: Herbal Medicine, Builders P.H. (ed.), IntechOpe: London, UK. CrossRef Scholar google search
de Filippis L.F. (2016) Plant secondary metabolites: From molecular biology to health products. In: Plant-environment Interaction: Responses and Approaches to Mitigate Stress, 1st ed., Azooz M.M., Ahmad P. (eds.), Wiley Blackwell: Hoboken, NJ, USA. CrossRef Scholar google search
Das S., Paul P., Chatterjee S., Chakraborty P., Sarker R.K., Das A., Maiti D., Tribedi P. (2021) Piperine exhibits promising antibiofilm activity against Staphylococcus aureus by accumulating reactive oxygen species (ROS). Arch. Microbiol., 204(1), 59. CrossRef Scholar google search
Khameneh B., Iranshahy M., Ghandadi M., Ghoochi A.D., Fazly B.B.S., Iranshahi M. (2015) Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug. Dev. Ind. Pharm., 41, 989-994. CrossRef Scholar google search
Liu Y., Zhu R., Liu X., Li D., Guo M., Fei B., Ren Y., You X., Li Y. (2023) Effect of piperine on the inhibitory potential of MexAB-OprM efflux pump and imipenem resistance in carbapenem-resistant Pseudomonas aeruginosa. Microb. Pathog., 185, 106397. CrossRef Scholar google search
Birdi T., d’Souza D., Tolani M., Daswani P., Nair V., Tetali P., Carlos T.J., Hoffner S. (2012) Assessment of the activity of selected Indian medicinal plants against Mycobacterium tuberculosis: A preliminary screening using the microplate alamar blue assay. Eur. J. Med. Plants, 2, 308-323. CrossRef Scholar google search
Zhang C., Li Z., Pan Q., Fan L., Pan T., Zhu F., Pan Q., Shan L., Zhao L. (2022) Berberine at sub-inhibitory concentration inhibits biofilm dispersal in Staphylococcus aureus. Microbiology, 168(9), 001243. CrossRef Scholar google search
Zhao N., Isguven S., Evans R., Schaer T.P., Hickok N.J. (2023) Berberine disrupts staphylococcal proton motive force to cause potent anti-staphylococcal effects in vitro. Biofilm, 5, 100117. CrossRef Scholar google search
Xia S., Ma L., Wang G., Yang J., Zhang M., Wang X., Su J., Xie M. (2022) In vitro antimicrobial activity and the mechanism of berberine against methicillinresistant Staphylococcus aureus isolated from bloodstream infection patients. Infect. Drug. Resist., 15, 1933-1944. CrossRef Scholar google search
Du G.F., Le Y.J., Sun X., Yang X.Y., He Q.Y. (2020) Proteomic investigation into the action mechanism of berberine against Streptococcus pyogenes. J. Proteomics, 215, 103666. CrossRef Scholar google search
Xu C., Wang F., Huang F., Yang M., He D., Deng L. (2021) Targeting effect of berberine on type I fimbriae of Salmonella typhimurium and its effective inhibition of biofilm. Appl. Microbiol. Biotechnol., 105(4), 1563-1573. CrossRef Scholar google search
Boberek J.M., Stach J., Good L. (2010) Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One, 5, e13745. CrossRef Scholar google search
Peng L., Kang S., Yin Z., Jia R., Song X., Li L., Li Z., Zou Y., Liang X., Li L., He C., Ye G., Yin L., Shi F., Lv C., Jing B. (2015) Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int. J. Clin. Exp. Pathol., 8, 5217-5223. Scholar google search
Bai X., Li X., Liu X., Xing Z., Su R., Wang Y., Xia X., Shi C. (2022) Antibacterial effect of eugenol on Shigella flexneri and its mechanism. Foods, 11(17), 2565. CrossRef Scholar google search
Su R., Bai X., Liu X., Song L., Liu X., Zhan X., Guo D., Wang Y., Chang Y., Shi C. (2022) Antibacterial mechanism of eugenol against Shigella sonnei and its antibacterial application in lettuce juice. Foodborne Pathog. Dis., 19(11), 779-786. CrossRef Scholar google search
Bezerra S.R., Bezerra A.H., de Sousa Silveira Z., Macedo N.S., Dos Santos Barbosa C.R., Muniz D.F., Sampaio Dos Santos J.F., Melo Coutinho H.D., Bezerra da Cunha F.A. (2022) Antibacterial activity of eugenol on the IS-58 strain of Staphylococcus aureus resistant to tetracycline and toxicity in Drosophila melanogaster. Microb. Pathog., 164, 105456. CrossRef Scholar google search
Ali S.M., Khan A.A., Ahmed I., Musaddiq M., Ahmed K.S., Polasa H., Rao L.V., Habibullah C.M., Sechi L.A., Ahmed N. (2005) Antimicrobial activities of eugenol and cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob., 4, 20. CrossRef Scholar google search
Devi K.P., Nisha S.A., Sakthivel R., Pandian S.K. (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol., 130(1), 107-115. CrossRef Scholar google search
Gutiérrez S., Morán A., Martínez-Blanco H., Ferrero M.A., Rodríguez-Aparicio L.B. (2017) The usefulness of non-toxic plant metabolites in the control of bacterial proliferation. Probiotics. Antimicrob. Prot., 9, 323-333. CrossRef Scholar google search
Rathinam P., Kumar V.H.S., Viswanathan P. (2017) Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. J. Bioadhesion Biofilm Res., 33, 624-639. CrossRef Scholar google search
Chen K., Peng C., Chi F., Yu C., Yang Q., Li Z. (2022) Antibacterial and antibiofilm activities of chlorogenic acid against Yersinia enterocolitica. Front. Microbiol., 13, 885092. CrossRef Scholar google search
Sun Z., Zhang X., Wu H., Wang H., Bian H., Zhu Y., Xu W., Liu F., Wang D., Fu L. (2020) Antibacterial activity and action mode of chlorogenic acid against Salmonella enteritidis, a foodborne pathogen in chilled fresh chicken. World J. Microbiol. Biotechnol., 36(2), 24. CrossRef Scholar google search
Lou Z., Wang H., Zhu S., Ma C., Wang Z. (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci., 76(6), M398-M403. CrossRef Scholar google search
Althunibat O.Y., Qaralleh H., Al-Dalin S.Y.A., Abboud M., Khleifat K., Majali I.S., Aldalin H.K.H., Rayyan W.A., Jaafraa A. (2016) Effect of thymol and carvacrol, the major components of Thymus capitatus on the growth of Pseudomonas aeruginosa. J. Pure Appl. Microbiol., 10, 367-374. Scholar google search
Kachur K., Suntres Z. (2019) The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr., 60(18), 3042-3053. CrossRef Scholar google search
Mody D., Athamneh A.I.M., Seleem M.N. (2019) Curcumin: A natural derivative with antibacterial activity against Clostridium difficile. J. Glob. Antimicrob. Resist., 21, 154-161. CrossRef Scholar google search
Karami-Zarandi M., Ghale H.E., Ranjbar R. (2022) Characterization of virulence factors and antibacterial activity of curcumin in hypervirulent Klebsiella pneumoniae. Future Microbiol., 17, 529-540. CrossRef Scholar google search
Tyagi P., Singh M., Kumari H., Kumari A., Mukhopadhy K. (2015) Bactericidal activity of curcumin i is associated with damaging of bacterial membrane. PLoS One, 10, e0121313. CrossRef Scholar google search
Hwang D., Lim Y.H. (2019) Resveratrol controls Escherichia coli growth by inhibiting the AcrAB-TolC efflux pump. FEMS Microbiol. Lett., 366(4), fnz030. CrossRef Scholar google search
Klancnik A., Sikic P.M., Trost K., Tusek Z.M., Mozetic V.B., Smole M.S. (2017) Anti-campylobacter activity of resveratrol and an extract from waste pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC eux pump. J. Appl. Microbiol., 122, 65-77. CrossRef Scholar google search
Fatima M., Amin A., Alharbi M., Ishtiaq S., Sajjad W., Ahmad F., Ahmad S., Hanif F., Faheem M., Khalil A.A.K. (2023) Quorum quenchers from Reynoutria japonica in the battle against methicillin-resistant Staphylococcus aureus (MRSA). Molecules, 28(6), 2635. CrossRef Scholar google search
Leng B.F., Qiu J.Z., Dai X.H., Dong J., Wang J.F., Luo M.J., Li H.E., Niu X.D., Zhang Y., Ai Y.X., Deng X.M. (2011) Allicin reduces the production of α-toxin by Staphylococcus aureus. Molecules, 16(9), 7958-7968. CrossRef Scholar google search
Lihua L., Jianhuit W., Jialini Y., Yayin L., Guanxin L. (2013) Effects of allicin on the formation of Pseudomonas aeruginosa biofinm and the production of quorum-sensing controlled virulence factors. Pol. J. Microbiol., 62(3), 243-251. CrossRef Scholar google search
Reiter J., Levina N., van der Linden M., Gruhlke M., Martin C., Slusarenko A.J. (2017) Diallylthiosulfinate (allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules, 22, 1711. CrossRef Scholar google search
Wu D., Kong Y., Han C., Chen J., Hu L., Jiang H., Shen X. (2008) d-Alanine:d-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int. J. Antimicrob. Agents, 32, 421-426. CrossRef Scholar google search
Roy P.K., Song M.G., Park S.Y. (2022) Impact of quercetin against Salmonella typhimurium biofilm formation on food-contact surfaces and molecular mechanism pattern. Foods, 11(7), 977. CrossRef Scholar google search
Khameneh B., Iranshahy M., Soheili V., Bazzaz B.S.F. (2019) Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Res. Infect. Control., 8, 118. CrossRef Scholar google search
Radulovic N.S., Blagojevic P.D., Stojanovic-Radic Z.Z., Stojanovic N.M. (2013) Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem., 20, 932-952. CrossRef Scholar google search
Savoia D. (2012) Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol., 7, 979-990. CrossRef Scholar google search
Gupta P.D., Birdi T.J. (2017) Development of botanicals to combat antibiotic resistance. J. Ayurveda Integr. Med., 8, 266-275. CrossRef Scholar google search
Guimarães A.C., Meireles L.M., Lemos M.F., Guimarães M.C.C., Endringer D.C., Fronza M., Scherer R. (2019) Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 24, 2471. CrossRef Scholar google search
Khan I., Kumar B.P.A., Bajpai V.K., Kang S.C. (2017) Antimicrobial potential of carvacrol against uropathogenic Escherichia coli via membrane disruption, depolarization, and reactive oxygen species generation. Front. Microbiol., 8, 2421. CrossRef Scholar google search
Pandey A.K., Kumar S. (2013) Perspective on plant products as antimicrobial agents: A review. Pharmacologia, 4, 469-480. CrossRef Scholar google search
Qiu J., Feng H., Lu J., Xiang H., Wang D., Dong J., Wang J., Wang X., Liu J., Deng X. (2010) Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl. Environ. Microbiol., 76, 5846-5851. CrossRef Scholar google search
Qiu J., Wang D., Xiang H., Feng H., Jiang Y., Xia L., Dong J., Lu J., Yu L., Deng X. (2010) Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates. PLoS One, 5, e9736. CrossRef Scholar google search
Qiu J., Niu X., Wang J., Xing Y., Leng B., Dong J., Li H., Luo M., Zhang Y., Dai X., Luo Y., Deng X. (2012) Capsaicin protects mice from community-associated methicillin-resistant Staphylococcus aureus pneumonia. PLoS One, 7, e33032. CrossRef Scholar google search
Qiu J., Xiang H., Hu C., Wang Q., Dong J., Li H., Luo M., Wang J., Deng X. (2011) Subinhibitory concentrations of farrerol reduce α-toxin expression in Staphylococcus aureus. FEMS Microbiol. Lett., 315, 129-133. CrossRef Scholar google search
Shah S., Stapleton P.D., Taylor P.W. (2008) The polyphenol (-)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus. Lett. Appl. Microbiol., 46, 181-185. CrossRef Scholar google search
Arzanlou M., Bohlooli S., Jannati E., Mirzanejad-Asl H. (2011) Allicin from garlic neutralizes the hemolytic activity of intra- and extracellular pneumolysin O in vitro. Toxicon, 57, 540-545. CrossRef Scholar google search
Kumar R., Pooja Patial S.J. (2016) Areview on efflux pump inhibitors of gram-positive and gram-negative bacteria from plant sources. Int. J. Curr. Microbiol. Appl. Sci., 5, 837-855. CrossRef Scholar google search
Prasch S., Bucar F. (2015) Plant derived inhibitors of bacterial efflux pumps: An update. Phytochem. Rev., 14, 961-974. CrossRef Scholar google search
Shi C., Che M., Zhang X., Liu Z., Meng R., Bu X., Ye H., Guo N. (2018) Antibacterial activity and mode of action of totarol against Staphylococcus aureus in carrot juice. J. Food Sci. Technol., 55, 924-934. CrossRef Scholar google search
Khan I.A., Mirza Z.M., Kumar A., Verma V., Qazi G.N. (2006) Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 50, 810-812. CrossRef Scholar google search
Piddock L.J.V., Garvey M.I., Rahman M.M., Gibbons S. (2010) Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J. Antimicrob. Chemother., 65, 1215-1223. CrossRef Scholar google search
Lou Z., Letsididi K.S., Yu F., Pei Z., Wang H., Letsididij R. (2019) Inhibitive effect of eugenol and its nanoemulsion on quorum sensing-mediated virulence factors and biofilm formation by Pseudomonas aeruginosa. Food Prot., 82, 379-389. CrossRef Scholar google search
Xu Z., Zhang H., Yu H., Dai Q., Xiong J., Sheng H., Qiu J., Jiang L., Peng J., He X., Xin R., Li D., Zhang K. (2019) Allicin inhibits Pseudomonas aeruginosa virulence by suppressing the rhl and pqs quorum-sensing systems. Can. J. Microbiol., 65, 563-574. CrossRef Scholar google search
Rajkumari J., Borkotoky S., Murali A., Suchiang K., Mohanty S.K., Busi S. (2018) Attenuation of quorum sensing controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by pentacyclic triterpenes, betulin and betulinic acid. Microb. Pathog., 118, 48-60. CrossRef Scholar google search
Plyuta V., Zaitseva J., Lobakova E., Zagoskina N., Kuznetsov A., Khmel I. (2013) Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS, 121, 1073-1081. CrossRef Scholar google search
Soumya E.A., Saad I.K., Hassan L., Ghizlane Z., Hind M., Adnane R. (2011) Carvacrol and thymol components inhibiting Pseudomonas aeruginosa adherence and biofilm formation. Afr. J. Microbiol. Res., 5, 3229-3232. CrossRef Scholar google search
Qian W., Sun Z., Wang T., Yang M., Liu M., Zhang J., Li Y. (2020) Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microb. Pathog., 139, 103924. CrossRef Scholar google search
Magesh H., Kumar A., Alam A., Sekar U., Sumantran V.N., Vaidyanathan R. (2013) Identification of natural compounds which inhibit biofilm formation in clinical isolates of Klebsiella pneumoniae. Indian. J. Exp. Biol., 51, 764-772. Scholar google search
Qian W., Wang W., Zhang J., Liu M., Fu Y., Li X., Wang T., Li Y. (2020) Sanguinarine inhibits mono- and dual-species biofilm formation by Candida albicans and Staphylococcus aureus and induces mature hypha transition of C. albicans. Pharmaceuticals, 13, 13. CrossRef Scholar google search
Agrawa A., Chaudhary U. (2018) Effect of natural compounds on inhibition of biofilm formation of multi drug resistant Staphylococcus aureus and Staphylococcus epidermidis — An in vitro study. Int. J. Curr. Microbiol. App. Sci., 7, 2921-2926. CrossRef Scholar google search
Yadav M.K., Chae S.-W., Im G.J., Chung J.-W., Song J.-J. (2015) Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain bio?lms. PLoS One, 10, e0119564. CrossRef Scholar google search
Jakobsen T.H., van Gennip M., Phipps R.K., Shanmugham M.S., Christensen L.D., Alhede M., Skindersoe M.E., Rasmussen T.B., Friedrich K., Uthe F., Jensen P.Ø., Moser C., Nielsen K.F., Eberl L., Larsen T.O., Tanner D., Høiby N., Bjarnsholt T., Givskov M. (2012) Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother., 56, 2314-2325. CrossRef Scholar google search
Jakobsen T.H., Bragason S.K., Phipps R.K., Christensen L.D., van Gennip M., Alhede M., Skindersoe M., Larsen T.O., Høiby N., Bjarnsholt T., Givskov M. (2012) Food as a source for quorum sensing inhibitors: Iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl. Environ. Microbiol., 78, 2410-2421. CrossRef Scholar google search
Ganin H., Rayo J., Amara N., Levy N., Krief P., Meijler M.M. (2013) Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. Med. Chem. Commun., 4, 175-179. CrossRef Scholar google search
Vandeputte O.M., Kiendrebeogo M., Rasamiravaka T., Stevigny C., Duez P., Rajaonson S., Diallo B., Mol A., Baucher M., El Jaziri M. (2011) The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology, 157, 2120-2132. CrossRef Scholar google search
Ouyang J., Sun F., Feng W., Sun Y., Qiu X., Xiong L., Liu Y., Chen Y. (2016) Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J. Appl. Microbiol., 120, 966-974. CrossRef Scholar google search
Norizan S., Yin W.-F., Chan K.-G. (2013) Caffeine as a potential quorum sensing inhibitor. Sensors, 13, 5117-5129. CrossRef Scholar google search
Kalia V.C., Patel S.K.S., Kang Y.C., Lee J.-K. (2019) Quorum sensing inhibitors as antipathogens: Biotechnological applications. Biotechnol. Adv., 37, 68-90. CrossRef Scholar google search
Khan R., Islam B., Akram M., Shakil S., Ahmad A., Ali S.M., Siddiqui M., Khan A.U. (2009) Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules, 14, 586-597. CrossRef Scholar google search
Ujam N.T., Oli A.N., Ikegbunam M.N., Adikwu M.U., Esimone C.O. (2013) Antimicrobial resistance evaluation of organisms isolated from liquid herbal products manufactured and marketed in South Eastern Nigeria. Br. J. Pharm. Res., 3, 548-562. CrossRef Scholar google search
Brown J.C., Jiang X. (2008) Prevalence of antibiotic-resistant bacteria in herbal products. J. Food Prot., 71, 1486-1490. CrossRef Scholar google search
Mundy L., Pendry B., Rahman M. (2016) Antimicrobial resistance and synergy in herbal medicine. J. Herb. Med., 6, 53-58. CrossRef Scholar google search
Lambert R.J.W., Skandamis P.N., Coote P.J., Nychas G.J. (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. App. Microbiol., 91, 453-462. CrossRef Scholar google search
Ayaz M., Ullah F., Sadiq A., Ullah F., Ovais M., Ahmed J., Devkota H.P. (2019) Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact., 308, 294-303. CrossRef Scholar google search
Bhardwaj M., Singh B.R., Sinha D.K., Kumar V., Vadhana P., Vinodhkumar O.R., Singh V.S., Nirupama K.R., Shree P., Saraf A. (2016) Potential of herbal drug and antibiotic combination therapy: A new approach to treat multidrug resistant bacteria. Pharm. Anal. Acta, 7, 11. CrossRef Scholar google search
Dwivedi G.Raj., Maurya A., Yadav D.K., Singh V., Khan F., Gupta M.K., Singh M., Darokar M.P., Srivastava S.K. (2019) Synergy of clavine alkaloid “chanoclavine” with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 37, 1307-1325. CrossRef Scholar google search
Miladi H., Zmantar T., Kouidhi B., Al Qurashi Y.M.A., Bakhrouf A., Chaabouni Y., Mahdouani K., Chaieb K. (2017) Synergistic effect of eugenol, carvacrol, thymol, p-cymene and gamma-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb. Pathog., 112, 156-163. CrossRef Scholar google search
Siriwong S., Teethaisong Y., Thumanu K., Dunkhunthod B., Eumkeb G. (2016) The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacol. Toxicol., 17, 39. CrossRef Scholar google search
Pal A., Tripathi A. (2019) Quercetin potentiates meropenem activity among pathogenic carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. J. Appl. Microbiol., 127(4), 1038-1047. CrossRef Scholar google search
Lin R.D., Chin Y.P., Hou W.C., Lee M.H. (2008) The effects of antibiotics combined with natural polyphenols against clinical methicillin-resistant Staphylococcus aureus (MRSA). Planta Med., 74, 840-846. CrossRef Scholar google search
Jia Y., Wu.X. (2017) In vitro activity of allicin combined with two antibiotics on intestinal Shigella. Infect. Int., 6, 25-29. CrossRef Scholar google search
Altemimi A., Lakhssassi N., Baharlouei A., Watson D.G., Lightfoot D.A. (2017) Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6, 42. CrossRef Scholar google search
Li Y., Kong D., Fu Y., Sussman M.R., Wu H. (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant. Physiol. Biochem., 148, 80-89. CrossRef Scholar google search
Salem M.A., de Souza L.P., Serag A., Fernie A.R., Farag M.A., Ezzat S.M., Alseekh S. (2020) Metabolomics in the context of plant natural products research: From sample preparation to metabolite analysis. Metabolites, 10, 37. CrossRef Scholar google search
Demarque D.P., Dusi R.G., de Sousa F.D.M., Grossi S.M., Silvério M.R.S., Lopes N.P., Espindola L.S. (2020) Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci. Rep., 10, 1051. CrossRef Scholar google search
Fierascu R.C., Fierascu I., Ortan A., Georgiev M.I., Sieniawska E. (2020) Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules, 25, 309. CrossRef Scholar google search
Yoshioka T., Nagatomi Y., Harayama K., Bamba T. (2018) Development of an analytical method for polycyclic aromatic hydrocarbons in coffee beverages and dark beer using novel high-sensitivity technique of supercritical fluid chromatography/mass spectrometry. J. Biosci. Bioeng., 126, 126-130. CrossRef Scholar google search
Williams S.R., Oatley D.L., Abdrahman A., Butt T., Nash R. (2012) Membrane technology for the improved separation of bioactive compounds. Procedia Eng., 44, 2112-2114. CrossRef Scholar google search
Gil-Chávez G.J., Villa J.A., Ayala-Zavala J.F., Heredia J.B., Sepulveda D., Yahia E.M., González-Aguilar G.A. (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Compr. Rev. Food Sci. Food Saf., 12, 5-23. CrossRef Scholar google search
Puértolas E., Koubaa M., Barba F.J. (2016) An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Res. Int., 80, 19-26. CrossRef Scholar google search
Pyne M.E., Narcross L., Martin V.J.J. (2019) Engineering plant secondary metabolism in microbial systems. Plant. Physiol., 179, 844-861. CrossRef Scholar google search
Cardoso J.C., Oliveira M.E.B.S., Cardoso F.C.I. (2019) Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira, 37, 124-132. CrossRef Scholar google search
Thomford N.E., Senthebane D.A., Rowe A., Munro D., Seele P., Maroyi A., Dzobo K. (2018) Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 19, 1578. CrossRef Scholar google search
Tebani A., Afonso C., Bekri S. (2018) Advances in metabolome information retrieval: Turning chemistry into biology. Part I: Analytical chemistry of the metabolome. J. Inherit. Metab. Dis., 41, 379-391. CrossRef Scholar google search
Yao H., Liu J., Xu S., Zhu Z., Xu J. (2017) The structural modification of natural products for novel drug discovery. Expert Opin. Drug Discov., 12, 121-140. CrossRef Scholar google search