1. Institute of Biomedical Chemistry, Moscow, Russia 2. Alferov University, St. Petersburg, Russia; Institute for Analytical Instrumentation, St. Petersburg, Russia
This work demonstrates the use of a solid-state nanopore detector to monitor the activity of a single molecule of a model enzyme, horseradish peroxidase (HRP). This detector includes a measuring cell, which is divided into cis- and trans- chambers by a silicon nitride chip (SiN structure) with a nanopore of 5 nm in diameter. To entrap a single HRP molecule into the nanopore, an electrode had been placed into the cis-chamber; HRP solution was added into this chamber after application of a negative voltage. The reaction of the HRP substrate, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), oxidation by the enzyme molecule was performed in the presence of hydrogen peroxide. During this reaction, the functioning of a single HRP molecule, entrapped in the nanopore, was monitored by recording the time dependence of the ion current flowing through the nanopore. The approach proposed in our work is applicable for further studies of functioning of various enzymes at the level of single molecules, and this is an important step in the development of single-molecule enzymology.
Download PDF:
Keywords: nanopore detector, enzymatic activity, nanopore, single molecule enzymology
Citation:
Ivanov Yu.D., Ableev A.N., Vinogradova A.V., Nevedrova E.D., Shumov I.D., Ziborov V.S., Kozlov A.F., Ivanova I.A., Vaulin N.V., Lebedev D.V., Bukatin A.S., Mukhin I.S., Ponomarenko E.A., Archakov A.I. (2024) Registration of activity of a single molecule of horseradish peroxidase using a detector based on a solid-state nanopore. Biomeditsinskaya Khimiya, 70(5), 349-355.
Ivanov Yu.D. et al. Registration of activity of a single molecule of horseradish peroxidase using a detector based on a solid-state nanopore // Biomeditsinskaya Khimiya. - 2024. - V. 70. -N 5. - P. 349-355.
Ivanov Yu.D. et al., "Registration of activity of a single molecule of horseradish peroxidase using a detector based on a solid-state nanopore." Biomeditsinskaya Khimiya 70.5 (2024): 349-355.
Ivanov, Yu. D., Ableev, A. N., Vinogradova, A. V., Nevedrova, E. D., Shumov, I. D., Ziborov, V. S., Kozlov, A. F., Ivanova, I. A., Vaulin, N. V., Lebedev, D. V., Bukatin, A. S., Mukhin, I. S., Ponomarenko, E. A., Archakov, A. I. (2024). Registration of activity of a single molecule of horseradish peroxidase using a detector based on a solid-state nanopore. Biomeditsinskaya Khimiya, 70(5), 349-355.
References
Uhlen M., Ponten F. (2005) Antibody-based proteomics for human tissue profiling. Mol. Cell. Proteomics, 4(4), 384–393. CrossRef Scholar google search
Archakov A.I., Ivanov Y.D., Lisitsa A.V., Zgoda V.G. (2007) AFM fishing nanotechnology is the way to reverse the Avogadro number in proteomics. Proteomics, 7(1), 4–9. CrossRef Scholar google search
Gygi S.P., Rochon Y., Franza B.R., Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol., 19(3), 1720–1730. CrossRef Scholar google search
Futcher B., Latter G.I., Monardo P., McLaughlin C.S., Garrels J.I. (1999) A sampling of the yeast proteome. Mol. Cell. Biol., 19(11), 7357–7368. CrossRef Scholar google search
Luo Y., Wu L., Tu J., Lu Z. (2020) Application of solid-state nanopore in protein detection. Int. J. Mol. Sci., 21(8), 2808. CrossRef Scholar google search
Galvanetto N., Ye Z., Marchesi A., Mortal S., Maity S., Laio A., Torre V. (2022) Unfolding and identification of membrane proteins in situ. eLife, 11, e77427. CrossRef Scholar google search
Radmacher M., Fritz M., Cleveland J.P., Walters D.A., Hansma P.K. (1994) Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with the atomic force microscope. Langmuir, 10(10), 3809–3814. CrossRef Scholar google search
Pleshakova T.O., Bukharina N.S., Archakov A.I., Ivanov Y.D. (2018) Atomic force microscopy for protein detection and their physicochemical characterization. Int. J. Mol. Sci., 19(4), 1142. CrossRef Scholar google search
Patolsky F., Zheng G., Hayden O., Lakadamyali M., Zhuang X., Lieber C.M. (2004) Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA, 101(39), 14017–14022. CrossRef Scholar google search
Omichi M., Asano A., Tsukuda S., Takano K., Sugimoto M., Saeki A., Sakamaki D., Onoda D., Hayashi T., Seki S. (2014) Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique. Nat. Commun., 5(1), 3718. CrossRef Scholar google search
Ying C., Ma T., Xu L., Rahmani M. (2022) Localized nanopore fabrication via controlled breakdown. Nanomaterials, 12(14), 2384. CrossRef Scholar google search
Sheng Y., Zhang S., Liu L., Wu H.C. (2020) Measuring enzymatic activities with nanopores. ChemBioChem, 21(15), 2089–2097. CrossRef Scholar google search
Pham B., Eron S.J., Hill M.E., Li X., Fahie M.A., Hardy J.A., Chen M. (2019) A nanopore approach for analysis of caspase-7 activity in cell lysates. Biophys. J., 117(5), 844–855. CrossRef Scholar google search
Chen H., Lin Y., Long Y.T., Minteer S.D., Ying Y.L. (2022) Nanopore-based measurement of the interaction of P450cam monooxygenase and putidaredoxin at the single-molecule level. Faraday Discussions, 233, 295–302. CrossRef Scholar google search
Wloka C., van Meervelt V., van Gelder D., Danda N., Jager N., Williams C.P., Maglia G. (2017) Label-free and real-time detection of protein ubiquitination with a biological nanopore. ACS Nano, 11(5), 4387–4394. CrossRef Scholar google search
Willems K., van Meervelt V., Wloka C., Maglia G. (2017) Single-molecule nanopore enzymology. Philos. Trans. R. Soc. Lond. B Biol. Sci., 372(1726), 20160230. CrossRef Scholar google search
Lee K., Park K.B., Kim H.J., Yu J.S., Chae H., Kim H.M., Kim K.B. (2018) Recent progress in solid-state nanopores. Adv. Mater., 30(42), 1704680. CrossRef Scholar google search
Steinbock L.J., Krishnan S., Bulushev R.D., Borgeaud S., Blokesch M., Feletti L., Radenovic A. (2014) Probing the size of proteins with glass nanopores. Nanoscale, 6(23), 14380–14387. CrossRef Scholar google search
Lee M.H., Kumar A., Park K.B., Cho S.Y., Kim H.M., Lim M.C. (2014) A low-noise solid-state nanopore platform based on a highly insulating substrate. Sci. Rep., 4(1), 7448. CrossRef Scholar google search
Deamer D., Akeson M., Branton D. (2016) Three decades of nanopore sequencing. Nat. Biotechnol., 34(5), 518–524. CrossRef Scholar google search
Pérez-Mitta G., Toimil-Molares M.E., Trautmann C., Marmisollé W.A., Azzaroni O. (2019) Molecular design of solid-state nanopores: Fundamental concepts and applications. Adv. Mater., 31(37), 1901483. CrossRef Scholar google search
Waugh M., Briggs K., Gunn D., Gibeault M., King S., Ingram Q., Jimenez A.M., Berryman S., Lomovtsev D., Andrzejewski L., Tabard-Cossa V. (2020) Solid-state nanopore fabrication by automated controlled breakdown. Nature Protocols, 15(1), 122–143. CrossRef Scholar google search
Tan S., Wang L., Liu H., Wu H., Liu Q. (2016) Single nanoparticle translocation through chemically modified solid nanopore. Nanoscale Res. Lett., 11, 1–10. CrossRef Scholar google search
Nam S.W., Rooks M.J., Kim K.B., Rossnagel S.M. (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett., 9(5), 2044–2048. CrossRef Scholar google search
Li J., Stein D., McMullan C., Branton D., Aziz M.J., Golovchenko J.A. (2001) Ion-beam sculpting at nanometre length scales. Nature, 412(6843), 166–169. CrossRef Scholar google search
Kwok H., Briggs K., Tabard-Cossa V. (2014) Nanopore fabrication by controlled dielectric breakdown. PloS ONE, 9(3), e92880. CrossRef Scholar google search
Krainer F.W., Glieder A. (2015) An updated view on horseradish peroxidases: Recombinant production and biotechnological applications. Appl. Microbiol. Biotechnol., 99(4), 1611–1625. CrossRef Scholar google search
Rogozhin V.V., Kutuzova G.D., Ugarova N.N. (2000) Inhibition of horseradish peroxidase by N-ethylamide of o-sulfobenzoylacetic acid. Russ. J. Bioorg. Chem., 26, 138–141. CrossRef Scholar google search
Davies P.F., Rennke H.G., Cotran R.S. (1979) Influence of molecular charge upon the endocytosis and intracellular fate of peroxidase activity in cultured arterial endothelium. J. Cell Sci., 49(1), 69–86. CrossRef Scholar google search
Welinder K.G. (1979) Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence, and some structural characteristics of horseradish peroxidase C. Eur. J. Biochem., 96, 483–502. CrossRef Scholar google search
Zhu L., Gu D., Liu Q. (2017) Hydrogen peroxide sensing based on inner surfaces modification of solid-state nanopore. Nanoscale Res. Lett., 12, 1–10. CrossRef Scholar google search
Tan S.W., Gu D.J., Liu H., Liu Q.J. (2016) Detection of a single enzyme molecule based on a solid-state nanopore sensor. Nanotechnology, 27(15), 155502. CrossRef Scholar google search
Sigma-Aldrich. Certificate of Analysis. Peroxidase from horseradish. Type VI-A, essentially salt-free, lyophilized powder, ≥250 units/mg solid (using pyrogallol), 950–2000 units/mg solid (using ABTS). Product Number P6782, Batch Number SLCK8071. Retrieved March 21, 2024, from: https://www.sigmaaldrich.com/certificates/COFA/P6/P6782/ P6782-BULK________SLCK8071__.pdf. Scholar google search
Berglund G.I., Carlsson G.H., Smith A.T., Szöke H., Henriksen A., Hajdu J. (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature, 417(6887), 463–468. CrossRef Scholar google search
Sanders S.A., Bray R.C., Smith A.T. (1994) pH-Dependent properties of a mutant horseradish peroxidase isoenzyme C in which Arg38 has been replaced with lysine. Eur. J. Biochem., 224, 1029–1037. CrossRef Scholar google search
Merck. Enzymatic Assay of Peroxidase (EC 1.11.1.7) 2,2-Azino-Bis(3-Ethylbenzthiazoline-6-Sulfonic Acid) as a Substrate Sigma Prod. No. P-6782. Retrieved March 21, 2024, from: https://www.sigmaaldrich.com/ RU/en/technical-documents/protocol/protein-biology/ enzymeactivity-assays/enzymatic-assay-of-peroxidase-abtsas- substrate. Scholar google search